ECO 426 (Market Design) - Lecture 1

Ettore Damiano

September 14, 2015

Ettore Damiano ECO 426 (Market Design) - Lecture 1

markets are institutions that determine how resources are allocated

- markets are institutions that determine how resources are allocated
- competitive markets

- markets are institutions that determine how resources are allocated
- competitive markets
 - allocation problem is solved by a price system

- markets are institutions that determine how resources are allocated
- competitive markets
 - allocation problem is solved by a price system
 - products are exchanged for a price

- markets are institutions that determine how resources are allocated
- competitive markets
 - allocation problem is solved by a price system
 - products are exchanged for a price
 - prices adjust so that supply=demand

Competitive Markets are "good" institutions for the exchange of "commodities"

< ∃ >

Competitive Markets are "good" institutions for the exchange of "commodities"

- the price is the only relevant variable in the economic decision to exchange
 - the identity of the counterparty is irrelevant

Competitive Markets are "good" institutions for the exchange of "commodities"

- the price is the only relevant variable in the economic decision to exchange
 - the identity of the counterparty is irrelevant
- commodity markets are "liquid"

Failures of prices as allocation mechanisms

Failures of prices as allocation mechanisms

Sometimes prices are not "all that matter"

• job finding (allocating jobs to workers)

- job finding (allocating jobs to workers)
 - being willing to work for an employer offering a given wage does not guarantee employment
 - being willing to hire a worker demanding a given wage does not guarantee hiring

- job finding (allocating jobs to workers)
 - being willing to work for an employer offering a given wage does not guarantee employment
 - being willing to hire a worker demanding a given wage does not guarantee hiring
- college admissions (allocating students to colleges)

- job finding (allocating jobs to workers)
 - being willing to work for an employer offering a given wage does not guarantee employment
 - being willing to hire a worker demanding a given wage does not guarantee hiring
- college admissions (allocating students to colleges)
 - being willing to pay ongoing tuition does not guarantee admission
 - admitting a student does not guarantee enrollment

• marriage "market"

- marriage "market"
 - social norms (sometimes) prevent contracting on a price for the exchange

- marriage "market"
 - social norms (sometimes) prevent contracting on a price for the exchange
- kidney transplants (allocating kidneys from donors to patients)

- marriage "market"
 - social norms (sometimes) prevent contracting on a price for the exchange
- kidney transplants (allocating kidneys from donors to patients)
 - legal (and moral) constraints prevents exchanges for valuable consideration

market liquidity concerns

Sometimes prices are the relevant variable in the transaction but markets are "illiquid"

< ∃ →

market liquidity concerns

Sometimes prices are the relevant variable in the transaction but markets are "illiquid"

• allocation of radio spectrum

 allocation of radio spectrum (both supply and demand side are "thin")

 allocation of radio spectrum (both supply and demand side are "thin") - also seller's objective might be different from max profit

- allocation of radio spectrum (both supply and demand side are "thin") - also seller's objective might be different from max profit
- trading fine art

- allocation of radio spectrum (both supply and demand side are "thin") - also seller's objective might be different from max profit
- trading fine art (thin supply side of van Gogh's Starry Night)

Need institutions different from competitive markets to address their shortcomings

Need institutions different from competitive markets to address their shortcomings

• matching markets: do not use (only) prices as allocation mechanism

Need institutions different from competitive markets to address their shortcomings

- matching markets: do not use (only) prices as allocation mechanism
- auction markets: allocation (and price formation) mechanism for "thin markets"

 Market participants are divided into two separate groups (two-sided market)

< ∃ > < ∃ >

- Market participants are divided into two separate groups (two-sided market)
 - A set of "men" M, with a typical man $m \in M$

- Market participants are divided into two separate groups (two-sided market)
 - A set of "men" M, with a typical man $m \in M$
 - A set of "women" W, with a typical woman $w \in W$

- Market participants are divided into two separate groups (two-sided market)
 - A set of "men" M, with a typical man $m \in M$
 - A set of "women" W, with a typical woman $w \in W$
- Allocation: each man can be matched to one woman (or stay single), and vice-versa (one-to-one matching)

• A matching is a collection of pairs such that:

🗇 と くほと くほとう

1

• A matching is a collection of pairs such that:

• each individual has one partner - (m, w) - or

• A matching is a collection of pairs such that:

- each individual has one partner (m, w) or
- has no partner (m, m) (m is "matched with self")

• A matching is a collection of pairs such that:

- each individual has one partner (m, w) or
- has no partner (m, m) (m is "matched with self")
- A matching can be described by a function

 $\mu: M \cup W \to M \cup W$

such that:

• A matching is a collection of pairs such that:

- each individual has one partner (m, w) or
- has no partner (m, m) (m is "matched with self")
- A matching can be described by a function

$$\mu: M \cup W \to M \cup W$$

such that:

- if µ(m) ≠ m then µ(m) ∈ W (each man is either single or matched to a woman)
- if µ(w) ≠ w then µ(w) ∈ M (each woman is either single or matched to a man)

• A matching is a collection of pairs such that:

- each individual has one partner (m, w) or
- has no partner (m, m) (m is "matched with self")
- A matching can be described by a function

$$\mu: M \cup W \to M \cup W$$

such that:

- if µ(m) ≠ m then µ(m) ∈ W (each man is either single or matched to a woman)
- if µ(w) ≠ w then µ(w) ∈ M (each woman is either single or matched to a man)
- $\mu(\mu(x)) = x$ (if $\mu(x)$ is x's partner, then x is $\mu(x)$'s partner)

• Each agent has a (strict) preferences over "acceptable" partners

▶ < ∃ >

- Each agent has a (strict) preferences over "acceptable" partners
 - matching with an acceptable partner is preferred to staying unmatched

- Each agent has a (strict) preferences over "acceptable" partners
 - matching with an acceptable partner is preferred to staying unmatched
- Example: $M = \{m_1, m_2, m_3, m_4\}$ and $W = \{w_1, w_2, w_3\}$

- Each agent has a (strict) preferences over "acceptable" partners
 - matching with an acceptable partner is preferred to staying unmatched
- Example: $M = \{m_1, m_2, m_3, m_4\}$ and $W = \{w_1, w_2, w_3\}$
 - m_1 preferences $w_2 \succ w_3 \succ w_1 \succ m_1$

- Each agent has a (strict) preferences over "acceptable" partners
 - matching with an acceptable partner is preferred to staying unmatched
- Example: $M = \{m_1, m_2, m_3, m_4\}$ and $W = \{w_1, w_2, w_3\}$
 - m_1 preferences $w_2 \succ w_3 \succ w_1 \succ m_1$ (or simply w_2, w_3, w_1)

- Each agent has a (strict) preferences over "acceptable" partners
 - matching with an acceptable partner is preferred to staying unmatched
- Example: $M = \{m_1, m_2, m_3, m_4\}$ and $W = \{w_1, w_2, w_3\}$
 - m_1 preferences $w_2 \succ w_3 \succ w_1 \succ m_1$ (or simply w_2, w_3, w_1)
 - w_1 preferences $m_1 \succ m_3 \succ w_1$

- Each agent has a (strict) preferences over "acceptable" partners
 - matching with an acceptable partner is preferred to staying unmatched
- Example: $M = \{m_1, m_2, m_3, m_4\}$ and $W = \{w_1, w_2, w_3\}$
 - m_1 preferences $w_2 \succ w_3 \succ w_1 \succ m_1$ (or simply w_2, w_3, w_1)
 - w_1 preferences $m_1 \succ m_3 \succ w_1$ (or simply m_1, m_3)

Ettore Damiano ECO 426 (Market Design) - Lecture 1

・ロト ・四ト ・ヨト ・ヨト

æ

• A matching μ is stable if

🗇 🕨 🔍 医 🕨 🖉 🛃

æ

- A matching μ is stable if
 - no agent is matched to an unacceptable mate

< ∃→

- A matching μ is stable if
 - no agent is matched to an unacceptable mate individual rationality

向下 くほと くほと

- A matching μ is stable if
 - no agent is matched to an unacceptable mate individual rationality
 - there is no pair of agents who would prefer to match with each other rather then their assigned partner

- A matching μ is stable if
 - no agent is matched to an unacceptable mate individual rationality
 - there is no pair of agents who would prefer to match with each other rather then their assigned partner no blocking

- A matching μ is stable if
 - no agent is matched to an unacceptable mate individual rationality
 - there is no pair of agents who would prefer to match with each other rather then their assigned partner no blocking
- Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$

- A matching μ is stable if
 - no agent is matched to an unacceptable mate individual rationality
 - there is no pair of agents who would prefer to match with each other rather then their assigned partner no blocking
- Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$
 - Both m_1 and m_2 prefer w_1 to w_2

- A matching μ is stable if
 - no agent is matched to an unacceptable mate individual rationality
 - there is no pair of agents who would prefer to match with each other rather then their assigned partner no blocking
- Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$
 - Both m_1 and m_2 prefer w_1 to w_2
 - Both w_1 and w_2 prefer m_1 to m_2

- A matching μ is stable if
 - no agent is matched to an unacceptable mate individual rationality
 - there is no pair of agents who would prefer to match with each other rather then their assigned partner no blocking
- Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$
 - Both m_1 and m_2 prefer w_1 to w_2
 - Both w_1 and w_2 prefer m_1 to m_2
 - The matching (m_1, w_2) , (m_2, w_1) is not stable

- A matching μ is stable if
 - no agent is matched to an unacceptable mate individual rationality
 - there is no pair of agents who would prefer to match with each other rather then their assigned partner no blocking
- Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$
 - Both m_1 and m_2 prefer w_1 to w_2
 - Both w_1 and w_2 prefer m_1 to m_2
 - The matching (m_1, w_2) , (m_2, w_1) is not stable m_1 and w_1 prefer each other to their assigned partner

- A matching μ is stable if
 - no agent is matched to an unacceptable mate individual rationality
 - there is no pair of agents who would prefer to match with each other rather then their assigned partner no blocking
- Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$
 - Both m_1 and m_2 prefer w_1 to w_2
 - Both w_1 and w_2 prefer m_1 to m_2
 - The matching (m_1, w_2) , (m_2, w_1) is not stable m_1 and w_1 prefer each other to their assigned partner
 - The matching $(m_1, w_1), (m_2, w_2)$ is the unique stable matching

• Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$

御 と く き と く き と …

э

- Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$
 - m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1

伺 とうぼう うちょう

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_1 to m_2 and w_2 prefers m_2 to m_1

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_1 to m_2 and w_2 prefers m_2 to m_1
- The matching $(m_1, w_1), (m_2, w_2)$ is the unique stable matching

• Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_1 to m_2 and w_2 prefers m_2 to m_1
- The matching $(m_1, w_1), (m_2, w_2)$ is the unique stable matching

• Example:
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$

• m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_1 to m_2 and w_2 prefers m_2 to m_1
- The matching $(m_1, w_1), (m_2, w_2)$ is the unique stable matching

• Example:
$$M = \{m_1, m_2\}$$
 and $W = \{w_1, w_2\}$

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_2 to m_1 and w_2 prefers m_1 to m_2

• Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_1 to m_2 and w_2 prefers m_2 to m_1
- The matching $(m_1, w_1), (m_2, w_2)$ is the unique stable matching

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_2 to m_1 and w_2 prefers m_1 to m_2
- The matching $(m_1, w_1), (m_2, w_2)$ is stable

• Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_1 to m_2 and w_2 prefers m_2 to m_1
- The matching $(m_1, w_1), (m_2, w_2)$ is the unique stable matching

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_2 to m_1 and w_2 prefers m_1 to m_2
- The matching $(m_1, w_1), (m_2, w_2)$ is stable
- The matching $(m_1, w_2), (m_2, w_1)$ is also stable

• Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_1 to m_2 and w_2 prefers m_2 to m_1
- The matching $(m_1, w_1), (m_2, w_2)$ is the unique stable matching

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_2 to m_1 and w_2 prefers m_1 to m_2
- The matching $(m_1, w_1), (m_2, w_2)$ is stable
- The matching $(m_1, w_2), (m_2, w_1)$ is also stable
- Note both men prefer the first matching and the opposite is true for the women

- m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
- w_1 prefers m_1 to m_2 and w_2 prefers m_2 to m_1
- The matching $(m_1, w_1), (m_2, w_2)$ is the unique stable matching
- Example: $M = \{m_1, m_2\}$ and $W = \{w_1, w_2\}$
 - m_1 prefers w_1 to w_2 and m_2 prefers w_2 to w_1
 - w_1 prefers m_2 to m_1 and w_2 prefers m_1 to m_2
 - The matching $(m_1, w_1), (m_2, w_2)$ is stable
 - The matching $(m_1, w_2), (m_2, w_1)$ is also stable
 - Note both men prefer the first matching and the opposite is true for the women
- Question: can we always find a stable matching?

Ettore Damiano ECO 426 (Market Design) - Lecture 1

▶ 《 臣 ▶ …

э

Round 1

• Each man proposes to his most preferred woman

- < ≣ → -

Round 1

- Each man proposes to his most preferred woman
- Each woman reject all but the most preferred proposal received

- Round 1
 - Each man proposes to his most preferred woman
 - Each woman reject all but the most preferred proposal received
 - Most preferred proposal is "held" not accepted

- Round 1
 - Each man proposes to his most preferred woman
 - Each woman reject all but the most preferred proposal received
 - Most preferred proposal is "held" not accepted
- Round 2
 - Each man rejected in the previous round proposes to the most preferred woman who has not yet rejected him

- Round 1
 - Each man proposes to his most preferred woman
 - Each woman reject all but the most preferred proposal received
 - Most preferred proposal is "held" not accepted
- Round 2
 - Each man rejected in the previous round proposes to the most preferred woman who has not yet rejected him
 - Each woman rejects all but the most preferred among new and held proposals

- Round 1
 - Each man proposes to his most preferred woman
 - Each woman reject all but the most preferred proposal received
 - Most preferred proposal is "held" not accepted
- Round 2
 - Each man rejected in the previous round proposes to the most preferred woman who has not yet rejected him
 - Each woman rejects all but the most preferred among new and held proposals
 - Most preferred proposal is "held" not accepted

- Round 1
 - Each man proposes to his most preferred woman
 - Each woman reject all but the most preferred proposal received
 - Most preferred proposal is "held" not accepted
- Round 2
 - Each man rejected in the previous round proposes to the most preferred woman who has not yet rejected him
 - Each woman rejects all but the most preferred among new and held proposals
 - Most preferred proposal is "held" not accepted
- ٩
- ٩
- Round T no proposal is rejected

- Round 1
 - Each man proposes to his most preferred woman
 - Each woman reject all but the most preferred proposal received
 - Most preferred proposal is "held" not accepted
- Round 2
 - Each man rejected in the previous round proposes to the most preferred woman who has not yet rejected him
 - Each woman rejects all but the most preferred among new and held proposals
 - Most preferred proposal is "held" not accepted
- ۲
- ٩
- Round T no proposal is rejected
 - algorithm ends
 - each woman is matched to the currently held proposal

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$

Ettore Damiano ECO 426 (Market Design) - Lecture 1

(E) < E) < E</p>

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ $m_1 \mid w_1 \quad w_2 \quad w_3$ $m_2 \mid w_3 \quad w_1$ $m_3 \mid w_1 \quad w_3 \quad w_2$

(E) < E) </p>

Example
$$M = \{m_1, m_2, m_3\}$$
 and $W = \{w_1, w_2, w_3\}$
 $m_1 \mid w_1 \quad w_2 \quad w_3 \quad w_1 \mid m_1 \quad m_2 \quad m_3$
 $m_2 \mid w_3 \quad w_1 \quad w_2 \quad w_2 \mid m_1 \quad m_2 \quad m_3$
 $m_3 \mid w_1 \quad w_3 \quad w_2 \quad w_3 \mid m_3 \quad m_1 \quad m_2$

→ ★ 문 ▶ ★ 문 ▶ ... 문

Example
$$M = \{m_1, m_2, m_3\}$$
 and $W = \{w_1, w_2, w_3\}$
 $m_1 \mid w_1 \quad w_2 \quad w_3 \quad w_1 \mid m_1 \quad m_2 \quad m_3$
 $m_2 \mid w_3 \quad w_1 \quad w_2 \quad w_2 \mid m_1 \quad m_2 \quad m_3$
 $m_3 \mid w_1 \quad w_3 \quad w_2 \quad w_3 \mid m_3 \quad m_1 \quad m_2$

 $m_1 m_2 m_3$

< 注 → 注

Example
$$M = \{m_1, m_2, m_3\}$$
 and $W = \{w_1, w_2, w_3\}$
 $m_1 \mid w_1 \quad w_2 \quad w_3 \quad w_1 \mid m_1 \quad m_2 \quad m_3$
 $m_2 \mid w_3 \quad w_1 \quad w_2 \quad w_2 \mid m_1 \quad m_2 \quad m_3$
 $m_3 \mid w_1 \quad w_3 \quad w_2 \quad w_3 \mid m_3 \quad m_1 \quad m_2$

m_1	m_2	<i>m</i> 3
w ₁	W3	w ₁

Ettore Damiano ECO 426 (Market Design) - Lecture 1

→ 《 문 》 _ 문

Example
$$M = \{m_1, m_2, m_3\}$$
 and $W = \{w_1, w_2, w_3\}$
 $m_1 \mid w_1 \quad w_2 \quad w_3 \quad w_1 \mid m_1 \quad m_2 \quad m_3$
 $m_2 \mid w_3 \quad w_1 \quad w_2 \quad w_2 \mid m_1 \quad m_2 \quad m_3$
 $m_3 \mid w_1 \quad w_3 \quad w_2 \quad w_3 \mid m_3 \quad m_1 \quad m_2$

m_1	m_2	m_3
w ₁	W3	w ₁
w ₁	W3	Ø

Ettore Damiano ECO 426 (Market Design) - Lecture 1

·문▶ ★ 문▶ · · 문

Example
$$M = \{m_1, m_2, m_3\}$$
 and $W = \{w_1, w_2, w_3\}$
 $m_1 \mid w_1 \quad w_2 \quad w_3 \quad w_1 \mid m_1 \quad m_2 \quad m_3$
 $m_2 \mid w_3 \quad w_1 \quad w_2 \quad w_2 \mid m_1 \quad m_2 \quad m_3$
 $m_3 \mid w_1 \quad w_3 \quad w_2 \quad w_3 \mid m_3 \quad m_1 \quad m_2$

m_1	m_2	m_3
<i>w</i> ₁	W3	w ₁
<i>w</i> ₁	w ₃	Ø
		W3

(《문》《문》) 문

Example
$$M = \{m_1, m_2, m_3\}$$
 and $W = \{w_1, w_2, w_3\}$
 $m_1 \mid w_1 \quad w_2 \quad w_3 \quad w_1 \mid m_1 \quad m_2 \quad m_3$
 $m_2 \mid w_3 \quad w_1 \quad w_2 \quad w_2 \mid m_1 \quad m_2 \quad m_3$
 $m_3 \mid w_1 \quad w_3 \quad w_2 \quad w_3 \mid m_3 \quad m_1 \quad m_2$

m_1	m_2	m_3
w ₁	W3	w ₁
w_1	w ₃	Ø
		W3
w ₁	Ø	W3

御天 天臣天 天臣天 二臣

Example
$$M = \{m_1, m_2, m_3\}$$
 and $W = \{w_1, w_2, w_3\}$
 $m_1 \mid w_1 \quad w_2 \quad w_3 \quad w_1 \mid m_1 \quad m_2 \quad m_3$
 $m_2 \mid w_3 \quad w_1 \quad w_2 \quad w_2 \mid m_1 \quad m_2 \quad m_3$
 $m_3 \mid w_1 \quad w_3 \quad w_2 \quad w_3 \mid m_3 \quad m_1 \quad m_2$

m_1	m_2	<i>m</i> 3
<i>w</i> ₁	W3	w ₁
<i>w</i> ₁	w ₃	Ø
		W3
<i>w</i> ₁	Ø	W3
	W_1	

Ettore Damiano ECO 426 (Market Design) - Lecture 1

(《문》《문》) 문

				and $W = \{w_1, w_2\}$			
m_1	<i>w</i> ₁	<i>W</i> ₂	W3			m_2	
	W3					m_2	
<i>m</i> 3	w ₁	W3	<i>W</i> ₂	W ₃	<i>m</i> 3	m_1	m_2

m_1	m_2	<i>m</i> 3
w ₁	W3	w ₁
w_1	w ₃	Ø
		W3
<i>w</i> ₁	Ø	W3
	<i>w</i> ₁	
w ₁	Ø	W3

Ettore Damiano ECO 426 (Market Design) - Lecture

@▶ 《注》 《注》 《注

				and $W = \{w_1, w_2\}$			
m_1	<i>w</i> ₁	<i>W</i> ₂	W3			m_2	
	W3					m_2	
<i>m</i> 3	w ₁	W3	<i>W</i> ₂	W ₃	<i>m</i> 3	m_1	m_2

m_1	m_2	m_3
w ₁	W3	w ₁
<i>w</i> ₁	W ₃	Ø
		W3
<i>w</i> ₁	Ø	W3
	<i>w</i> ₁	
<i>w</i> ₁	Ø	W3
	<i>m</i> ₂	

Ettore Damiano ECO 426 (Market Design) - Lecture 1

→ ★ 문 ▶ ★ 문 ▶ ... 문

				and $W = \{w_1, w_2\}$			
m_1	<i>w</i> ₁	<i>W</i> ₂	W3			m_2	
	W3					m_2	
<i>m</i> 3	w ₁	W3	<i>W</i> ₂	W ₃	<i>m</i> 3	m_1	m_2

m_1	m_2	<i>m</i> 3
w ₁	W3	w ₁
w_1	W ₃	Ø
		W3
w ₁	Ø	W3
	<i>w</i> ₁	
w ₁	Ø	W3
	<i>m</i> ₂	
w_1	<i>m</i> ₂	W3

→ ★ 문 ▶ ★ 문 ▶ ... 문

				and $W = \{w_1, w_2\}$			
m_1	<i>w</i> ₁	<i>W</i> ₂	W3			m_2	
	W3					m_2	
<i>m</i> 3	w ₁	W3	<i>W</i> ₂	W ₃	<i>m</i> 3	m_1	m_2

m_1	m_2	<i>m</i> 3
w_1	W3	w_1
w_1	w ₃	Ø
		W3
<i>w</i> ₁	Ø	W3
	w ₁	
<i>w</i> ₁	Ø	W3
	<i>m</i> ₂	
w ₁	<i>m</i> ₂	W ₃
w ₁	<i>m</i> ₂	W3

《문》《문》 문

- No man ever proposes twice to the same woman
- The outcome of the DA algorithm is a matching

- No man ever proposes twice to the same woman
- The outcome of the DA algorithm is a matching

- No man ever proposes twice to the same woman
- The outcome of the DA algorithm is a matching

Theorem. The outcome of the DA algorithm is a stable matching.

• The proposal "held" by each woman improves (weakly) in each round

- No man ever proposes twice to the same woman
- The outcome of the DA algorithm is a matching

- The proposal "held" by each woman improves (weakly) in each round
 - Each woman is matched to the most desirable man who has ever proposed to her

- No man ever proposes twice to the same woman
- The outcome of the DA algorithm is a matching

- The proposal "held" by each woman improves (weakly) in each round
 - Each woman is matched to the most desirable man who has ever proposed to her
- Every time he makes a new proposal, a man proposes to the next most desirable woman

- No man ever proposes twice to the same woman
- The outcome of the DA algorithm is a matching

- The proposal "held" by each woman improves (weakly) in each round
 - Each woman is matched to the most desirable man who has ever proposed to her
- Every time he makes a new proposal, a man proposes to the next most desirable woman
 - Each man has proposed to, and has been rejected by, all women more desirable than his match

- No man ever proposes twice to the same woman
- The outcome of the DA algorithm is a matching

Theorem. The outcome of the DA algorithm is a stable matching.

- The proposal "held" by each woman improves (weakly) in each round
 - Each woman is matched to the most desirable man who has ever proposed to her
- Every time he makes a new proposal, a man proposes to the next most desirable woman
 - Each man has proposed to, and has been rejected by, all women more desirable than his match
- For each man *m*, every woman more desirable than his match prefers her current match to *m*.

- 4 回 5 - 4 回 5 - 4 回 5

• Existence of a stable matching relies on the two-sided nature of the market

- Existence of a stable matching relies on the two-sided nature of the market
- Example (the roomate problem) Three students A, B, C can form a pair to share a two-people room

- Existence of a stable matching relies on the two-sided nature of the market
- Example (the roomate problem) Three students A, B, C can form a pair to share a two-people room
 - A prefers sharing with B to sharing with C to not sharing

- Existence of a stable matching relies on the two-sided nature of the market
- Example (the roomate problem) Three students A, B, C can form a pair to share a two-people room
 - A prefers sharing with B to sharing with C to not sharing
 - B prefers sharing with C to sharing with A to not sharing
 - C prefers sharing with A to sharing with B to not sharing

- Existence of a stable matching relies on the two-sided nature of the market
- Example (the roomate problem) Three students A, B, C can form a pair to share a two-people room
 - A prefers sharing with B to sharing with C to not sharing
 - B prefers sharing with C to sharing with A to not sharing
 - C prefers sharing with A to sharing with B to not sharing
 - there is no stable matching

• When multiple stable matching exist, the DA algorithm with man proposing yields a different outcome from the DA algorithm with women proposing

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$

- ● 臣 ▶ ----

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ $m_1 \mid w_1 \quad w_2 \quad w_3$ $m_2 \mid w_1 \quad w_2 \quad w_3$ $m_3 \mid w_1 \quad w_3 \quad w_2$

- < ⊒ → ---

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ $m_1 | w_1 | w_2 | w_3$ W_1 m_1 m_2 m_3 $m_2 | w_1 | w_2 | w_3$ W_2 m_1 m_3 m_2 W_1 W_3 W_2 m_3 W3 m_1 m_2 m_3

 $m_1 m_2 m_3$

DA m

Ettore Damiano ECO 426 (Market Design) - Lecture 1

<2 € > 2 €

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$									
m_1	<i>w</i> ₁	<i>W</i> ₂	W3	W1 W2 W3	m_1	m_2	m_3		
<i>m</i> ₂	w ₁	<i>W</i> ₂	W3	W2	m_1	m_3	m_2		
<i>m</i> ₃	w ₁	W3	W2	W ₃	m_1	m_2	m_3		

m_1	m_2	m_3
<i>w</i> ₁	<i>w</i> ₁	<i>w</i> ₁

DA m

< 注→

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$								
m_1	<i>w</i> ₁	<i>W</i> ₂	W3	W1	m_1	m_2	<i>m</i> 3	
<i>m</i> ₂	<i>w</i> ₁	<i>w</i> ₂	W3	<i>W</i> ₂	m_1	m_3	m_2	
<i>m</i> 3	w ₁	W3	<i>W</i> ₂	W3	m_1	m_2	m_3	

	m_1	m_2	<i>m</i> 3
	w_1	<i>w</i> ₁	<i>w</i> ₁
DA m	<i>w</i> ₁	Ø	Ø

Example
$$M = \{m_1, m_2, m_3\}$$
 and $W = \{w_1, w_2, w_3\}$
 $m_1 \mid w_1 \quad w_2 \quad w_3 \quad w_1 \mid m_1 \quad m_2 \quad m_3$
 $m_2 \mid w_1 \quad w_2 \quad w_3 \quad w_2 \mid m_1 \quad m_3 \quad m_2$
 $m_3 \mid w_1 \quad w_3 \quad w_2 \quad w_3 \mid m_1 \quad m_2 \quad m_3$

$$\mathsf{DA} \ m \frac{\begin{array}{ccc} m_1 & m_2 & m_3 \\ \hline w_1 & w_1 & w_1 \\ \hline w_1 & \emptyset & \emptyset \\ \hline & w_2 & w_3 \end{array}}$$

$$\mathsf{DA} \ m \frac{\begin{array}{cccc} m_1 & m_2 & m_3 \\ \hline w_1 & w_1 & w_1 \\ \hline w_1 & \emptyset & \emptyset \\ \hline & w_2 & w_3 \\ \hline & w_1 & w_2 & w_3 \end{array}}$$

$$\mathsf{DA} \ m \frac{\begin{array}{cccc} m_1 & m_2 & m_3 \\ \hline w_1 & w_1 & w_1 \\ \hline w_1 & \emptyset & \emptyset \\ \hline \hline w_2 & w_3 \\ \hline \hline w_1 & w_2 & w_3 \\ \hline \hline w_1 & w_2 & w_3 \end{array}}$$

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ $m_1 \mid w_1 \mid w_2 \mid w_3$ W_1 m_1 m_2 m_3 $m_2 | w_1 | w_2 | w_3$ W_2 m_1 m_3 m_2 m_3 W_1 W3 W_2 W3 m_1 m_2 m_3 m_1 m_2 m_3 W1 W₂ W3 W_1 W_1 W_1 Ø Ø W_1 DA m DA w W₂ W3 W_1 W_2 W3 W1 W₂ W3

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ m_1 W_1 W2 W3 W_1 m_1 m_2 m_3 W1 W2 W3 m_2 W_2 m_1 m_3 m_2 *m*3 W1 W3 W_2 W3 m_1 m_2 m_3 m_1 m_2 m_3 W_1 W₂ W3 W_1 W1 W_1 m_1 m_1 m_1 Ø Ø Ø Ø W_1 m_1 DA w DA m W₂ W3 W_1 W_2 W3 W1 W₂ W3

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ W_1 m_1 W₂ W3 W_1 m_1 m_2 m_3 W1 W2 W3 m_2 W2 m_1 m_3 m_2 *m*3 W1 W3 W_2 W3 m_1 m_2 m_3 m_1 m_2 m_3 W_1 W2 W3 W_1 W1 W_1 m_1 m_1 m_1 Ø Ø Ø Ø W_1 m_1 DA w -DA m W₂ W₃ m_3 m_2 W_1 W_2 W3 m_1 m₃ m_2 W₂ W3 W1

Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$													
	m_1	<i>w</i> ₁	<i>w</i> ₂	W3			I	w_1	m	1	<i>m</i> ₂	<i>m</i> 3	
	m_2	<i>w</i> ₁	<i>W</i> ₂	W3			I	W2	m	1	<i>m</i> 3	m_2	
	<i>m</i> 3	w ₁	W3	<i>W</i> ₂			I	W3	m	1	<i>m</i> 2	m_3	
- DA <i>m</i> -	m_1	<i>m</i> ₂	<i>m</i> 3					И	w ₁ ı		L L	N ₃	
	w ₁	w ₁	<i>w</i> ₁					n	η_1	m_1	r	n_1	
	w_1	Ø	Ø		DA w			n	$n_1 \emptyset$			Ø	
		<i>w</i> ₂	W ₃							m	3 r	m_2	
	w ₁	<i>w</i> ₂	W3					<u>n</u>	η_1	$m_1 m_3$		m_2	
	w_1	<i>w</i> ₂	W3					n	η_1	m	3 r	m_2	

Ettore Damiano ECO 426 (Market Design) - Lecture 1

< 厘 ▶ ...

• Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ m_1 W_1 W_2 W_3 W_1 m_1 m_2 m_3 $m_2 | w_1 | w_2 | w_3$ W2 m_1 m_3 m_2 W1 W3 W2 m_3 W3 m_1 m_2 m_3

- DA men proposing: $(m_1, w_1), (m_2, w_2), (m_3, w_3)$
- DA women proposing $(m_1, w_1), (m_2, w_3), (m_3, w_2)$

• Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ m_1 W_1 W_2 W_3 W_1 m_1 m_2 m_3 $m_2 | w_1 | w_2 | w_3$ W2 m_1 $m_3 m_2$ W1 W3 W2 m_3 Wз m_1 m_2 m_3

- DA men proposing: $(m_1, w_1), (m_2, w_2), (m_3, w_3)$
- DA women proposing $(m_1, w_1), (m_2, w_3), (m_3, w_2)$
- all men prefer (weakly) the DA men proposing outcome

• Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ m_1 $W_1 \quad W_2$ Wз W_1 m_1 m_2 m_3 $m_2 | w_1 | w_2 | w_3$ W2 m_1 $m_3 m_2$ W1 W3 W2 m_3 Wз m_1 m_2 m_3

- DA men proposing: $(m_1, w_1), (m_2, w_2), (m_3, w_3)$
- DA women proposing $(m_1, w_1), (m_2, w_3), (m_3, w_2)$
- all men prefer (weakly) the DA men proposing outcome
- all women prefer (weakly) the DA women proposing outcome

• Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ m_1 W_1 W2 Wз W_1 m_1 m_2 m_3 $m_2 | w_1 | w_2 | w_3$ W2 m_1 m_3 m_2 W_1 W3 W2 m_3 Wз m_1 m_2 m_3

- DA men proposing: $(m_1, w_1), (m_2, w_2), (m_3, w_3)$
- DA women proposing $(m_1, w_1), (m_2, w_3), (m_3, w_2)$
- all men prefer (weakly) the DA men proposing outcome
- all women prefer (weakly) the DA women proposing outcome
- Theorem For two stable matchings μ, μ', all men (weakly) prefer μ if and only if all women (weakly) prefer μ'.

• Example $M = \{m_1, m_2, m_3\}$ and $W = \{w_1, w_2, w_3\}$ m_1 W1 W2 Wз W1 m_1 m_2 m_3 $m_2 \mid w_1 \mid w_2 \mid w_3$ W_2 m_1 m_3 m_2 W1 Wз m_3 W₂ Wз m_1 m_2 m_3

- DA men proposing: $(m_1, w_1), (m_2, w_2), (m_3, w_3)$
- DA women proposing $(m_1, w_1), (m_2, w_3), (m_3, w_2)$
- all men prefer (weakly) the DA men proposing outcome
- all women prefer (weakly) the DA women proposing outcome
- Theorem For two stable matchings μ, μ', all men (weakly) prefer μ if and only if all women (weakly) prefer μ'.
- The DA algorithm with men proposing yields the best stable matching for men and the worst stable matching for women.