<u>Midterm Test</u> Monday February 23, 2015

Instructions: You have 110 minutes to complete this test. There are four (4) questions for a total of 100 points. To obtain credit you **must give an argument** to support each of your answers. No aids allowed.

Question 1 (25 points)

In an house allocation with existing tenants model, consider a variant of the YRMH-IGYT mechanism where, when an agent requests another agent's house they swap their priority position within the mechanism. For example, suppose it is agent a_i 's turn and he points to the house of some agent a_j . Then, a_j goes at the beginning of the line, and a_i takes a_j 's turn in the queue.

- a) Is this mechanism Pareto efficient?
- b) Is this mechanism strategy proof?

Question 2 (25 points)

Consider a student placement problem with seven students $\{i_1, i_2, \ldots, i_7\}$ and four schools in two categories, E and M. Schools s_1 and s_2 belong to category E, and have quotas of 1 and 2 respectively. Schools s_3 and s_4 belong to category M and have each a quota of 2. The students rank order in category E is $\{1, 2, 3, 4, 5, 6, 7\}$ (i.e. student i_1 is ranked first, student i_2 second etc.) The students rank order in category M is $\{3, 4, 6, 1, 5, 2, 7\}$. When the multi-category serial dictatorship is run, its outcome (described as the set of students assigned to each of the four schools) is as follows:

Round 1 $(s_1 : i_1), (s_2 : i_2, i_4), (s_3 : i_3, i_6), (s_4 : i_1, i_4)$ Round 2 $(s_1 : i_2), (s_2 : i_4, i_5), (s_3 : i_3, i_6), (s_4 : i_1, i_5)$ Round 3 $(s_1 : i_2), (s_2 : i_4, i_6), (s_3 : i_3, i_6), (s_4 : i_1, i_5)$ Round 4 $(s_1 : i_2), (s_2 : i_4, i_6), (s_3 : i_1, i_3), (s_4 : i_5, i_7)$

Derive **all** the restrictions on the student preferences implied by the outcome of the multicategory serial dictatorship mechanism described above.

Question 3 (25 points)

Consider a housing market problem with eight participants $\{a_1, \ldots, a_8\}$. Each participant owns a house and denote with h_i the house of agent a_i , for $i = 1, \ldots, 8$. The strict preferences of the participants are described in the following table

a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
h_3	h_1	h_6	h_5	h_3	h_7	h_3	h_2
h_2	h_6	h_2	h_2	h_1	h_8	h_1	h_4
h_7	h_5	h_4	h_3	h_6	h_5	h_7	h_6
h_1	h_3	h_8	h_8	h_8	h_1		h_3
	h_2	h_5	h_4	h_7	h_6		h_8
		h_3		h_4			
				h_5			

a) Find all Core allocations for this housing market.

Suppose now each house has a price, with p_i denoting the price of house h_i . Given a set of prices, (p_1, \ldots, p_8) , each agent can afford to purchase any house that is no more expensive then her own (i.e. agent a_i can afford a house h_j if $p_j \leq p_i$.) Suppose that each agent demands her favorite house among those she can afford.

- b) Can you find a set of prices that clear the market (i.e. each house is demanded by exactly one agent)?
- c) In general, can an allocation associated with market clearing prices be different from a Core allocation?

Question 4 (25 points) Consider a marriage market with 4 men, m_1, \ldots, m_4 , and 4 women, w_1, \ldots, w_4 . Both men and women are strictly ordered with respect to their height, with m_1 (w_1) and m_4 (w_4) being the tallest and shortest man (woman) respectively. Find all stable matchings in each of the following scenarios.

- a) All agents strictly prefer taller to shorter partners.
- b) All agents with an odd index (i.e. m_1, m_3, w_1, w_3) prefer taller to shorter partners, and the opposite is true for agents with even indexes.
- c) The men's preferences are as in part b), but the women's preferences are reversed (i.e. w_1 and w_3 prefer shorter partners while w_2 and w_4 prefer taller partners.)
- d) Generalize the model to the case when there are K agents on each side of the market, where K is an even number larger than 4, and find the stable matchings under the three preference scenarios above.