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Abstract

A dynamic two-sided matching market is considered. We examine two existing notio
stability—the core and recursive core—for this multi-period market and argue that they both
limitations. We define two new notions of stability and label them,self-sustaining stability andstrict
self-sustaining stability. Both concepts can be viewed as the recursive core with more stringen
ditions for when deviating coalitions are effective. We show that these concepts overcome s
the weaknesses of the core and the recursive core. We also provide conditions for the exis
our concepts.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Many trading arrangements in the real world do not satisfy the assumptions of a
rasian model of exchange. A special class of such arrangements istwo-sided matching
markets. These markets are characterized by two important features. First, participa
long to two disjoint sets; they cannot switch from one side of the market to the oth
matter what the market condition. A second feature is the bilateral nature of exchan
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contrast is with centralized goods markets where the identity of one’s trading part
a matter of indifference. Examples of two-sided markets include many labor marke
well as auction markets.

In this paper, we are concerned with a subclass of two-sided matching markets, n
those in which matches areone-to-one: each participant may be matched with at most
partner from the other side. Historically, the two sides of the market have been labe
males and thefemales, and the model termed amarriage market. In many applications
a many-to-one relationship is more realistic but the issues we are concerned with
discussed in the simpler class of one-to-one matching markets.

Any testable theory of a matching market must place some restrictions on the k
outcomes that one expects to observe. An obvious restriction is that outcomes be “s
In thinking about stability, we have in mind cooperative concepts similar to thecore. An
outcome that is not in the core is, by definition, susceptible to blocking by rational pla
In general, there will of course be many other restrictions imposed by the incentive
rules associated with a particular trading institution. We consider the requirement of
ity because it represents a minimal constraint in markets where participation is volu
In addition, the cooperative notion of stability only requires a very general descripti
the game and so is applicable to many markets, whereas issues of non-cooperative b
depend crucially on the particular trading and information structure under considera

A large and very successful literature has considered stability in the special c
a static market (Roth and Sotomayor, 1990 provide an excellent summary). Existe
the core has been established and many of its interesting characteristics noted. I
markets, however, participants trade repeatedly. Indeed, investigating stability in a dy
market is a necessary first step to studying more realistic models where agents have
about the values of matches as they occur over time.

When there are multiple periods, amatching plan specifies a partner for each participa
at each point in time. An obvious candidate notion of stability is the core over the s
feasible matching plans. The core, however, has a particularly unsatisfactory prope
dynamic game: it can admit matching plans that are not “time-consistent.” Unless p
can make binding agreements, elements in the core may be blocked at some later
time.

Therecursive core—defined by Becker and Chakrabarti (1995) in the context of a
ital accumulation model—overcomes this. In our context, it requires that the continu
of a matching plan be in the core of the continuation market at all times.

Unfortunately, the recursive core is frequently empty. The reason is that it admit
credible” deviations. In judging the stability of the grand coalition’s matching plan—
is, the plan for all players—the recursive core requires that the plan be immune to blo
by coalitions at every point in time. However, no deviating coalition is subject to the
requirement.

The issue of what constitutes a “credible” deviation turns out to be very importan
dynamic matching market (in ways that are not apparent in a static market). Approp
modifying the recursive core to deal with issues of credibility leads to a stability con
that is always non-empty.

We begin by imposing the requirement that blocking coalitions be “self-sustain

They must choose matching plans in which no subset of the coalition can reach an agree-
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ment to deviate from the deviation. The sub-coalitions have to satisfy the same requir
and so on. This is the cooperative analogue to the concept ofcoalition proofness of Bern-
heim et al. (1987).1

We call our conceptself-sustaining stability. By limiting the plans of deviating coali
tions, we obtain a set of matching plans that is (at least weakly) larger than the rec
core. Even so, an example shows that there might be dynamic matching markets w
self-sustaining stable plan. Non-existence highlights a second aspect of credibility.

Self-sustaining stability implicitly stipulates that coalitions that deviate do so there
members of the blocking coalition do not have to be immune to proposals to rejo
grand market in some later period.2 This amounts to a form of dynamic commitment f
deviations.

In many situations, this degree of commitment is not possible. We introduce a
ond definition that imposes a stricter requirement for when a deviating plan is cre
It exists under general conditions. For want of a better term, we refer to it asstrict self-
sustaining stability. Under this new definition, a deviation must satisfy the condition
self-sustaining stability, and in addition, it must be better—relative to the candidate
plan—for each member of the deviating coalition,at each future point in time. A deviating
coalition is now only credible if it can commit to remaining away from the grand ma
This enlarges the set of stable plans for the grand coalition. Whether self-sustaining
ity or its stricter version is appropriate will depend on the level of commitment availab
the participants of the market.

The paper proceeds as follows. In the next section, we describe a dynamic ma
market.3 Section 3 presents the agent-form of the game and illustrates some of the
that arise when defining stability in a dynamic matching market. In Section 4, we intro
the concept of self-sustaining stability. Sections 5 introduces the definition of strict
sustaining stability. Section 6 discusses our concepts and relates them to other con
the literature. Finally, Section 7 concludes.

2. Dynamic matching markets

We denote the two disjoint, finite sides of the market, themales and thefemales, by
M = {m1,m2, . . . ,m|M|} andF = {f1, f2, . . . , f|F |}, respectively. We will refer to the se
of players,M ∪ F , as thegrand coalition. The market operates forT finite periods with
players free to rematch at the end of each period.4 The outcome each period is referred
as amatching.

1 The self-sustaining idea can be applied to a static cooperative game. Ray (1989) showed, however,
additional requirement does not alter the core. We show that it does matter in a dynamic game when it is
in conjunction with time-consistency.

2 Of course, this criticism also applies to the core and the recursive core.
3 A few papers in the matching literature deal with a notion of dynamics different from ours. For example

and Vande Vate (1990) and Blum et al. (1997) are interested in decentralized, dynamic processes by whi
matchings can be reached. We are interested in stable matchingplans in a multi-period market.

4 A previous version of this paper, Damiano and Lam (2001), contains some results for the infinite-h

case.
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Definition 1. A matching is a one-to-one functionµ satisfying the following:

µ : (M ∪ F) → (M ∪ F), (1)

µ(µ(i)) = i, (2)

if µ(m) �= m ∈ M, then µ(m) ∈ F, (3)

if µ(f ) �= f ∈ F, then µ(f ) ∈ M. (4)

µ(i) = i implies that individuali is unmatched; we will also refer to such a player as be
self-matched or single. We denote the set of all possible matchings byM. A matching plan
is simply a matching for each period.

Definition 2. A matching plan is a functionµ : NT → M, whereNT is the set of natura
numbers{1,2, . . . , T }.

We focus on repeated matching markets. Each period, players have strict prefe
over matches with members of the other side of the market. Letπ(µ) in R|M∪F | be a
vector of period payoffs for each player from matching with the partner specified u
µ in M. Throughout the paper, we assume that the outside option associated with
single is normalized to zero for all players. If any element ofπ(µ) is strictly negative, we
say thatµ is notindividually rational.

Let β ∈ [0,1] be the discount factor and define the payoff function,π , over matching
plans, to be the sum of discounted period payoffs:5,6

π(µ) =
T∑

t=1

βt−1π
(
µ(t)

)
. (5)

For a subset of playersS, we use a subscript to denote the above objects restrict
players inS. For example,MS is the set of possible matchings among players inS.

3. Agent-form representation

The notions of stability that we will introduce are most tractable when stated in a t
formed game.7 We refer to this transformed game as theagent-form of the dynamic market
It is obtained by assuming that each player is represented by a sequence of agen
for each time period of the market. We refer to a participant in the multi-period mark
a player and reserve the termagent for some player at a particular time.

The notation for the agent-form is involved, but an example will follow. Definei(t) ≡ i

for all i ∈ M ∪ F and allt = 1, . . . , T . For anyS ⊆ M ∪ F , let S(t) = {i(t) | i ∈ S}. The

5 In our notation,µ is a particular element ofM; while a boldµ is a mapping from time ontoM. Similarly,
π is a function over the set of matchings; while boldπ is a function over the set of matching plans.

6 In a static market, ordinal preferences suffice for many results. We assign values to period matchings
payoffs to be aggregated over time.

7 Although we will continue to discuss stability in the context of a two-sided matching market, the defin

to follow can also be applied to any dynamic cooperative game.
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set of agents in the agent-form isM ∪ F , whereM = M(1) ∪ M(2) ∪ · · · ∪ M(T ) and
F = F(1) ∪ F(2) ∪ · · · ∪ F(T ).

Previously, we defined a matching plan to be a function from time to a matc
outcome for the players. We abuse notation and now define a matching planµ to be a
one-to-one function satisfying the following:

µ : (M ∪ F ) → (M ∪ F ), (6)

µ
(
µ

(
i(t)

)) = i(t), (7)

if µ
(
m(t)

) �= m(t) ∈ M(t), thenµ
(
m(t)

) ∈ F(t), (8)

if µ
(
f (t)

) �= f (t) ∈ F(t), thenµ
(
f (t)

) ∈ M(t). (9)

This is the usual definition of matching in a static market—applied to agents rathe
players—with the additional restriction that only couples at the same time can match

Let M(t) denote the set of possible matchings betweenM(t) and F(t). The set of
feasible matching plans is:

∏T
t=1M(t) = M(1) × M(2) × · · · × M(T ). We denote the

projection ofµ in
∏T

t=1M(t) ontoM(τ ) by µ(τ ).8

As before, the vectorπ(µ(t)) in R|M∪F | specifies the period payoffs at timet . We abuse
notation by usingπ to denote the payoff function in the agent-form game. Previously
usedπ to denote a vector inR|M∪F |, representing the present discounted payoffs for
players. In the agent-form, we treat each player as a sequence of agents soπ is now a
vector inR|M∪F |, representing the payoffs to agents. It is defined as follows:

π(µ)M(t)∪F(t) =
∑
τ�t

βτ−tπ
(
µ(τ )

)
, (10)

wherexS is the projection of a vectorx ∈ R|M∪F | onto the subspaceR|S|.
For a subset of agentsS from M ∪ F , πS andµS are defined as in Eqs. (6) to (10

restricted to agents inS.
To illustrate these new definitions, consider the following 2× 2 matching market. Th

matrix below denotes the period payoffs. The(i, j)th cell contains two numbers, being t
payoffs to malemi and femalefj , respectively, from a match with each other. Assume
this one-shot market is repeated twice with no discounting (β = 1):

f1 f2

m1 5,−1 −1,5

m2 −1,5 5,−1
(11)

Since players receive a payoff of zero when they remain single, the unique elem
the Gale–Shapley set (in the one-shot market) specifies that players remain self-m
{µsingle(i) = i, i ∈ (M ∪ F)}, which yieldsπ(µsingle) = (0,0,0,0).

In the agent-form of the two-period repeated game, the set of male agents isM =
{m1(1),m2(1),m1(2),m2(2)}. Each male player,mi , is represented by two agents,mi(1)

8 This notation is consistent with our previous view of a matching plan as a mapping from time to the

possible period matchings.
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and mi(2). Similarly, F = {f1(1), f2(1), f1(2), f2(2)}. The payoffs in the agent-form
game can be partially represented by the following matrix:

f1(1) f2(1) f1(2) f2(2)

m1(1) × ×
m2(1) × ×
m1(2) × × 5,−1 −1,5

m2(2) × × −1,5 5,−1

(12)

For the agents in period 2, their payoffs are provided by the stage payoffs. “×” is used
to denote infeasible matches: matching plans do not allow agents from different p
to match. What about the payoff to a period 1 agent, saym1(1)? It consists of two com
ponents: the utility he obtains from matching with some period 1 agent, and the
he obtains from the match of his future self. Consider, for example, the matching pµ

given by {µ(m1(1)) = f1(1),µ(m2(1)) = f2(1),µ(m1(2)) = f2(2),µ(m2(2)) = f1(2)}.
The utility of agentm1(1) is the sum of 5—being the benefit from matching withf2(1)—
andβ × (−1)—being the discounted utility that agentm1(1) obtains fromm1(2)’s match
with f2(2). Discounting in the original dynamic market has been transformed into aex-
ternality between agents in the agent-form.9 These externalities flow from later times
earlier ones.

3.1. Existing notions of stability in agent-form

In the context of a single-period market, Gale and Shapley (1962) considerstable match-
ings. These are matchings that are individually rational, and that cannot beblocked by a
male and female pair. A pair players(m,f ) blocks a matchingµ, if each of them prefer
the other to her partner underµ. The notion of blocking can be extended, naturally, to co
tions of more than two players. Thecore of a matchings market is the set of individua
rational matchings that are not blocked by any coalition of agents. It is well known th
set of stable matchings is equivalent to the core—no matching can be blocked by a
coalition if it is not blocked by a male and female pair—and that this set is non-em
To avoid confusion with the multi-period market, we refer to the core in the single-p
market as theGale–Shapley set.

An obvious notion of stability in our dynamic market is the core over the set of matc
plans. In contrast to a static market, coalitions of more than a male and female p
matter in a dynamic market. They provide the possibility of altering partners and s
achieve payoffs that a couple cannot. Next, we formally define the core over the
matching plans in terms of blocking conditions in the agent-form. Later, we will w
alternative definitions of stability in a dynamic market as modifications of the core o
agent-form game.

9 Because the payoffs to agents in period 1 depend on the matches of agents in period 2, the payoffs c

completely represented in the matrix of (12).
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The following operator,O : 2M∪F → 2M∪F , will prove useful in the definitions tha
follow:

O(S) = {
i(t) ∈ M ∪ F

∣∣ i(τ ) ∈ S andτ � t
}
. (13)

For any set of agentsS, O(S) extends the set to include the future selves of agents inS.

Definition 3. A matching planµ ∈ ∏
t M(t) is in thecore of the dynamic market if ther

does not exist a coalition of agentsS ⊆ M(1) ∪ F(1) and a feasible matching plan fo
O(S), µO(S), such that

πO(S)(µO(S))
S > π(µ)S. (14)

In the above definition,(x1, . . . , xn) > (y1, . . . , yn) denotesxi � yi for all i = 1, . . . , n

andxi > yi for somei. Blocking from the core must involve a collection of period 1 age
together with their successors. In considering whether this coalition is effective, on
payoffs of agents in period 1 matter.10

For the two-period example of (11), it is easy to see that a core matching
µcore, involves implementing the male-preferred matching{µ(m1) = f1, µ(m2) = f2} in
one period and the female-preferred matching{µ(m1) = f2, µ(m2) = f1} in the other.
There are two such plans. At the beginning of the game, these plans achieve the
π(µcore) = (4,4,4,4), and cannot be blocked by any coalition.

Unfortunately, one would not expect to observe such an outcome in any play of the
if matching plans are not binding. In the second period, one side of the market alwa
an incentive to withdraw participation and to renege on the plan agreed upon in perio11

A concept that does impose stability at every point in time is therecursive core of
Becker and Chakrabarti (1995). This concept is closely related to thesequential core of
Gale (1982). Both are motivated by the lack of trust in a general equilibrium model. A
did for the core, we can define the recursive core of a dynamic matching market in
of blocking conditions in the agent-form.

Definition 4. A matching planµ ∈ ∏
t M(t) is in therecursive core of the dynamic marke

if at all times t � T , there does not exist a coalition of agents,S ⊆ M(t) ∪ F(t), and a
feasible matching plan forO(S), µO(S), such that

πO(S)(µO(S))
S > π(µ)S. (15)

In this definition, a deviating coalition is made up of agents of the same periodS ⊆
M(t)∪F(t), together with their successors. It differs from the definition of the core in

10 Notice that this definition is not simply the usual definition of the “core” applied to the agent-form g
Only certain coalitional deviations are allowed—namelyO(S) whereS ⊆ M(1) ∪ F(1)—and only the payoffs
of certain agents in such deviations matter—namely those inS.
11 It may be thought that randomization could provide a solution to this problem. Players could agree
plement matchings based on a publicly observable flip of a coin each period. This would give each pl
expected payoff equal to the payoff fromµcore. However, this requires that the outcome specified by the coin
be enforceable, which is counter to the spirit of the paper. We want to place some restrictions on the m

plans which may be observed when enforceability is assumed not to be possible.
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it allows t > 1. Like that definition, however, only the payoffs of agents inS matter. The
condition of dynamic consistency in a multi-period game has been expressed as
condition in the agent-form.

In a dynamic matching market, the recursive core demands that a matching p
in the core at the beginning of the market, and that its continuation be in the core
continuation market at all points in time. It is clear that the recursive core is a refine
or a subset, of the core. In the two-period example of matrix (11), both core matching
specify that players be matched in the second period. This is inconsistent with stab
the last period, which requires all players to remain single. The recursive core is thus
in this example.

Once again, this result seems unsatisfactory. Intuitively, the matching plan which
ifies that participants remain unmatched in both periods appears to be robust to “bl
by rational players.” Yet, this matching plan is not in the recursive core. Denote this m
ing plan byµsingle. In period 2, the continuation ofµsingle is consistent with the recursiv
core since it specifies a Gale–Shapley matching in the final period. However, in pe
µsingle is blocked by the grand coalition playing a core matching plans, which we
already argued does not satisfy the requirement of time-consistency.

This highlights an inconsistency associated with the recursive core: coalitions a
lowed too much freedom in choosing the deviating matching plan. In judging the or
matching plan, the recursive core requires that the plan be immune to blocking by
tions. However, no deviating group of players (including the grand coalition) is subje
the same requirement.

4. Self-sustaining stability

The example and discussion in the previous section suggest that, for blocking coa
to be credible, they should themselves be stable against further deviations. In fact
consistent, we should not only demand that deviations be credible, but that any de
from a deviation also be credible, and so on. We refer to this sequence of requirem
self-sustainability.

The non-cooperative concept ofcoalition-proof Nash equilibria due to Bernheim et a
(1987) is motivated by such considerations. Ray (1989) defines the cooperative an
to coalition-proof Nash equilibria and label it themodified core. A matching plan is in the
modified core if there does not exist any “credible” blocking coalition. Blocking coalit
are “credible” if they choose matching plans in which no subset of the coalition can
an agreement to deviate from the deviation. The sub-coalitions have to satisfy the
requirement, and so on. The concept is formally defined inductively, beginning wit
singleton coalition. Ray shows, somewhat surprisingly, that self-sustainability in a
game has no impact: the modified core is equivalent to the core.12 We show that Ray’s resu
no longer holds in a dynamic market when time consistency is also imposed. In a dy

12 This is not true in the non-cooperative setting, where the set of coalition-proof Nash equilibria—th
cooperative analogue of the modified core—in general differs from the set of strong Nash equilibria—th

cooperative analogue of the core.
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market, time-consistency should be a necessary condition for coalitional credibility
not just a requirement on the grand coalition’s plan. Self-sustainability, when inter
with time-consistency, does in general reduce the number of credible deviations.

Next we formally defineself-sustaining stability (S3). It is essentially the cooperativ
analogue to the concept ofperfect coalition-proofness for extensive form games of Bern
heim et al. (1987).13 Recall that the modified core is obtained by imposing the idea o
core, not only on the grand coalition, but on deviating coalitions, as well as on devia
from deviations, and so on. In this sense, it is the “self-sustaining core.” S3 is obtained by
imposing the idea of the recursive core, not just on the grand coalition, but on dev
coalitions, and on deviations from deviations, and so on. It can be viewed as the
sustaining recursive core.” The definition below is recursive, both through the size
coalition, as well as through time.

Definition 5.

(1) For coalitions of agents of the formO({i}), wherei ∈ M ∪ F , the planµ(j) = j , for
all j ∈ O({i}), satisfiesself-sustaining stability with respect toi. For any coalition of
agents from the final period,S ⊂ (M(T )∪F(T )), µS satisfiesself-sustaining stability
if it is in the Gale–Shapley set.14

(2) Consider a coalition of the formO(S), whereS ⊂ (M(t) ∪ F(t)) for somet . Assume
that self-sustaining stability has been defined for all coalitionsC, whereC ⊂ S or
C ⊆ (M(τ) ∪ F(τ)) for someτ > t . A matching planµO(S) is self-sustaining-stable
with respect toS if:
(a) There does not exist a coalitionC with C ⊂ S or C ⊆ (M(τ)∪F(τ))∩O(S), with

a feasible matching plañµO(C), which satisfies self-sustaining stability forC, such
that

πO(C)(µ̃O(C))
C > πO(S)(µO(S))

C. (16)

(b) There is no other matchingµ′
O(S) satisfying (a) such that

πO(S)

(
µ′

O(S)

)S
> πO(S)(µO(S))

S. (17)

Like the recursive core, S3 allows deviating coalitions of the formO(S), where
S ⊆ (M(t) ∪ F(t)) for somet . Also, in considering whether the deviation is actua
effective, only the payoffs of the agents at the time of the deviation,S, are relevant
The difference is that S3 requires deviating plans to be self-sustaining, whereas
recursive core does not.

13 As an aside, if the S3 is the counterpart of perfect coalition-proof equilibria, we can think of the cor
the counterpart of strong Nash equilibria. Similarly, the recursive core can be thought of as the anal
Rubinstein’s (1990) concept ofstrong perfect equilibrium.
14 Strictly speaking, this statement is an immediate consequence of the equivalence between core and

core—self-sustainability does not “bite” in a static market (Ray, 1989)—rather than adefinition.
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In a finite-horizon market, we can construct a matching plan in the S3 set via backward
induction.15 The recursion begins with singleton coalitions in periodT . It proceeds through
the size of the coalition until the grand coalition is reached, and then considers th
period market beginning at timeT − 1, and so on.

Applying this concept to the two-period example of (11) is relatively simple. One
verify that the unique plan in S3 is µsinglewhich specifies that all players remain unmatch
in both periods. This is what we had claimed to be the intuitive outcome of that m
The plan survives because the deviating plan which blocksµsingle from the recursive core
is not admitted under S3.

4.1. Existence of S3

The following lemma, needed to prove the subsequent proposition, is a strengthe
thestrong stability property for a special class of preferences. The strong stability prop
(see Theorem 3.4 in Roth and Sotomayor, 1990) states that unstable matchings ei
individual rationality, or are blocked by a pair of agents that would be better off under
stable matching. The lemma below strengthens the claim establishing that the blocki
will be indeed matched under that stable matching.

Lemma 1. In a static market, suppose that for all S ⊆ M ∪ F , there exists a unique Gale–
Shapley matching among players in S, and let µG–S be the Gale–Shapley matching for
M ∪F . Then, for any individually rational, non-Gale–Shapley matching µ among M ∪F ,
there is a player i ∈ M ∪ F such that {i,µG–S(i)} blocks µ.

Proof. The claim is obvious when eitherM or F is a singleton. Suppose the statemen
true if the market is restricted to any coalitionS ⊂ M ∪F . We prove the inductive step th
the statement is true when the market consists of participantsM ∪ F .

Let µ be an individually rational, non-Gale–Shapley matching forM ∪ F . Let M�,
M≺, andM∼ denote the sets of males that strictly preferµ to µG–S, strictly preferµG–S

to µ, and are indifferent between the two matchings, respectively.F�, F≺, andF∼ are
defined analogously. Since preferences are strict, fori ∈ M∼ ∪ F∼, µ(i) = µG–S(i). Thus,
M� ∪ M≺ ∪ F� ∪ F≺ are matched amongst themselves under bothµ andµG–S. Moreover,
becauseµG–S is a Gale–Shapley matching,µ(i) ∈ F≺ for all i ∈ M�, andµ(i) ∈ M≺ for
all i ∈ F�. If µG–S(i) ∈ M≺ ∪ F≺ for any i ∈ M≺ ∪ F≺, then bothi andµG–S(i) strictly
preferµG–S to µ and we are done. Suppose otherwise thatµG–S(i) ∈ F� for i ∈ M≺, and
µG–S(i) ∈ M� for i ∈ F≺. Consider a matching market restricted toM≺ ∪ F�. Sinceµ

is individually rational andµG–S is the only stable matching,M≺ ∪ F� �= ∅ by the strong
stability property. BothµG–S andµ define a matching for this smaller market. Moreov
µG–S is also a Gale–Shapley matching for this smaller market. Since there is a u
Gale–Shapley matching by assumption,µ is not a Gale–Shapley matching in the sma
market. Thus, there is a playeri ∈ M≺ ∪ F� such that{i,µG–S(i)} blocksµ. �
15 Solving for S3 in an infinite-horizon game is more difficult. In Damiano and Lam (2001), we employ the

of dynamic programming to characterize the S3 set when the horizon is infinite.
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The following proposition provides conditions for the existence of S3.

Proposition 2. There exists a matching plan which satisfies S3 if at least one of the follow-
ing conditions hold:

(a) The discount factor β is sufficiently close to zero.
(b) There are less than, or equal to, two players on each side of the market.
(c) All feasible matchings are individually rational and for all subsets of players, S ⊆

M ∪ F , there is a unique Gale–Shapley matching among the players.
(d) All players remaining single is a Gale–Shapley matching.

Proof. (a) This is an obvious consequence of strict preferences and the fact that the
Shapley set is non-empty.

(b) The claim is obvious when there are less than two players on either side
market. The unique plan in S3 consists of repeating the unique Gale–Shapley matchin
every period. Consider a market with two players on both sides of the market. We sh
induction that any plan which consists of repeating the same Gale–Shapley matchin
period is in S3. WhenT = 1 any stable matching is in S3. For T̃ < T , assume that an
sequence of̃T identical Gale–Shapley matchings is in S3 for the market with̃T periods.
TakeµG–S to be a sequence ofT identical Gale–Shapley matchings.µG–S can only be
blocked by a coalitionO(S), whereS ⊆ M(1) ∪ F(1). If S has strictly less than fou
agents, there is a unique matching planµO(S) which satisfies S3 with respect toS, and
µO(S)(1) = · · · = µO(S)(T ). Thus,O(S) cannot blockµG–S if µG–S(1) is a Gale–Shaple
matching. It remains to show that there cannot be a different matching plan in S3 that
Pareto dominates (with respect toM(1) ∪ F(1)) the proposed plan. If the unique Gal
Shapley matching is for all agents to stay single, a backward induction argument
that no agent can ever be matched in a S3 plan. If in a Gale–Shapley matching some ag
is not single, then at least one agent must be receiving his/her maximal payoff. ThusµG–S

cannot be Pareto dominated.
(c) We show that the matching plan that specifies the unique Gale–Shapley ma

µG–S in each period is the only element of the S3 set. Notice that for markets with just on
male or one female, this statement is trivially true. Now, assume that for allS ⊂ M ∪ F ,
the unique S3 plan forS specifies that the Gale–Shapley matching forS, µG–S

S , be played
every period. We need to show two things for the market with playersM ∪ F :

(i) any plan that specifies a matchingµ �= µG–S is not in S3;
(ii) the planµG–S(t) = µG–S for all t is in S3.

For (i): supposeµ �= µG–S is the last non-Gale–Shapley matching played in so
matching planµ in S3, and thatt̄ is the last period in whichµ is played. By Lemma 1
there is a playeri such that{i,µG–S(i)} blocksµ. Then, at timēt , O({i,µG–S(i)}) blocksµ,
a contradiction.

For (ii): for any set of playersS ⊂ M ∪ F , the unique S3 plan specifies the Gale

Shapley matchingµG–S

S in all periods. Thus,S blocksµG–S via an admissible plan only if
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S ) > π(µG–S)S . This is not possible because by assumptionµG–S is a Gale–Shaple

matching.
(d) By backward induction, the plan which specifies that all players remain single,

points in time, is in the S3 set. �
If players are sufficiently impatient (condition (a)), the dynamic game effectively

comes a sequence of static markets. Non-emptiness of S3 follows from the non-emptines
of the Gale–Shapley set. With few players (condition (b)), the number of possible d
tions are sufficiently limited that any plan that repeats the same Gale–Shapley matc
in S3.

These conditions are restrictive and it is not difficult to construct an example in w
none of the conditions are satisfied, and in fact no matching plan satisfies S3. Such an ex-
ample follows. It will provide some intuition for why condition (c) implies existence. M
importantly, it will also serve to motivate our definition ofstrict self-sustaining stability.
The following stage-game is repeated twice, with no discounting(β = 1):16

f1 f2 f3 f4

m1 1,1 1,1 3,2 2,1

m2 1,1 1,1 2,1 3,2

m3 2,3 1,1 5,1 1,5

m4 1,2 2,3 1,5 5,1

(18)

This stage game has a unique Gale–Shapley matching:{µG–S(m1) = f3, µG–S(m2) = f4,
µG–S(m3) = f1, µG–S(m4) = f2}. Any candidate for inclusion in S3 must specify this
matching among agents inM(2) andF(2). Consider a matching plan that specifies
Gale–Shapley matching in both periods. Denote this plan byµG–S. It is blocked by the
coalition of 8 agentsO(S), whereS = {m3(1),m4(1), f3(1), f4(1)}, playing the follow-
ing S3 plan: {µswitch

O(S) (mi(1)) = fi(1), i = 3,4; µswitch
O(S) (mi(2)) = fj (2), i, j ∈ {3,4} and

i �= j}. From the perspective of the dynamic market, the 4 players{m3,m4, f3, f4} carry
out one matching in period 1, and switch to another in period 2. This plan gives age
S: πO(S)(µ

switch
O(S) )S = (6,6,6,6) > (4,4,4,4) = π(µG–S)S . Other candidates for S3 can be

similarly eliminated.
Because the candidate S3 plan specifies the same Gale–Shapley matching in both

ods, no subcoalition can do better by using only one matching.O(S) blocks the propose
plan by playing two different matchings—both of which are in the Gale–Shapley setS.
Condition (c) implies existence because it rules out this possibility.

Under the assumptions of Proposition 2, there exists a sequence of Gale–Shapley
ings which satisfies S3. However, in general, a matching plan might belong to S3 even if

16 This example does not satisfy the assumption of strict preferences over period matches. It can b
modified to satisfy strict preferences without changing any of the conclusions. We do not do so in o

simplify the presentation of the example.
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it is not a sequence of Gale–Shapley matchings. We illustrate this claim with an exa
Consider the following stage game repeated twice with no discounting:

f1 f2 f3

m1 1,5 5,1 2,2

m2 −1,6 1,5 5,1

m3 5,1 2,2 1,5

(19)

The stage game has three Gale–Shapley matchings:{µ̃G–S(m1) = f1, µ̃
G–S(m2) = f2,

µ̃G–S(m3) = f3}, {µ̂G–S(m1) = f2, µ̂
G–S(m2) = f3, µ̂

G–S(m3) = f1}, and {µ̇G–S(m1) =
f3, µ̇

G–S(m2) = f2, µ̇
G−S(m3) = f1}. Consider a fourth matching{µ(m1) = f1,µ(m2) =

f3,µ(m3) = f2} which is not Gale–Shapley because it is blocked bym1 and f3. The
matching plan in whichµ is implemented in the first period followed bỹµG–S in the sec-
ond period, yields a payoff vector(2,6,3,10,7,6) to (m1(1),m2(1),m3(1), f1(1), f2(1),

f3(1)) and, it can be verified, satisfies S3. Notice thatm1 andf3 do not block the propose
matching plan. The gain tof3 from matching tom1 rather thanm2 in the first period, is
smaller than her loss from matching tom2 instead ofm3 in the second period.

5. Strict self-sustaining stability

The non-existence example of the previous section suggests a criticism of S3: when
a deviation occurs, only members of the deviating coalition may contemplate devi
from the deviation. Members of the deviating coalition are prevented from forming a
to deviate further with someone not included in the coalition.17

In the example, the candidate planµG–S is blocked by a deviating plan which sa
isfies S3 but may nevertheless be “incredible.” At timet = 1, it is certainly true that
the planµswitch

O(S) dominates remaining in the grand market; that is, agents inS benefit
from the deviation. However, at timet = 2, agents inO(S) − S receive a payoff vecto
of (1,1,5,5). The payoffs are ordered:m3(2), m4(2), f3(2), f4(2). From the perspec
tive of agents{m3(2),m4(2)}, they would have done better under the candidate
µG–S: πO(S)(µ

switch
O(S) ){m3(2),m4(2)} = (1,1) < (2,2) = π(µG–S){m3(2),m4(2)}. What would

stop agents{m3(2),m4(2)} from reneging on the deviation agreed to by{m3(1),m4(1)},
and trying to return to the grand market in periodt = 2? In the definition of S3, blocking
coalitions take the form ofO(S) but only the payoffs to agents inS are relevant. In term
of the dynamic market, we are allowing deviating players to commit to match am
themselves after the deviation. When this commitment is not possible, certain dev
allowed under S3 are not credible.

Our concept ofstrict self-sustaining stability (S4) imposes a more stringent conditio
for when deviations are credible. A deviating coalition must specify a plan that satisfi
conditions of self-sustaining stability, and in addition, this plan must be better—re
to the candidate stable plan—for every agent in the coalition (not just those at the t
the deviation). In the terminology of the dynamic game, the plan has to be better
17 The same criticism applies to coalition-proof Nash equilibria and to the modified core.
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players of the deviating coalitionat all points in time. Credible deviations under S4 have
to account for the possibility that players may return to the grand coalition. S4 ensure tha
they have no incentive to do so, assuming that they return to the original plan.

Definition 6. A matching planµ ∈ ∏
t M(t) satisfiesstrict self-sustaining stability, if there

does not exist a coalition of agentsS ⊆ M(t)∪F(t) together with a feasible matching pla
µ′

O(S) for O(S), such that

πO(S)

(
µ′

O(S)

)
> π(µ)O(S), (20)

for any t = 1,2, . . . , T .

There are two apparent differences between S4 and S3. The first can be seen in a com
parison of the superscripts in Eq. (16) with those in (20). For a coalitionO(S)—where
S ⊆ M(t) ∪ F(t)—to block in S3, only agents inS have to be better off. For a coalitio
O(S) to block in S4, all of the agents inO(S) have to benefit; the agents inS must be in
agreement with all their future selves.

The second difference is that the definition of S4 is not recursive; deviating coalition
are not required to propose a “stable” outcome. The following proposition shows tha
second difference is only apparent. This proposition simplifies the use of S4: one does no
have to worry about self-sustainability if the stricter condition on deviating coalition
imposed. Intuitively, the definition of “blocking” in S4 is the standard one (with respect
the agent-form): all agents in the deviating coalition must do better. Because of th
can use Ray’s (1989) argument for the equivalence between the modified core and th

Proposition 3. Suppose that the matching plan µ is not in S4. Then there is some subcoali-
tion S ⊆ M(t) ∪ F(t) for some time t � T , and a matching µO(S) which satisfies S4 with
respect to the agent-form game for O(S), such that

πO(S)(µO(S)) > π(µ)O(S). (21)

Proof. If µ is not in S4, there is by definition a collection of agentsC ⊆ M(t) ∪ F(t), for
somet � T , and a matchingµO(C) such that:

πO(C)(µO(C)) > π(µ)O(C). (22)

If µO(C) satisfies S4 with respect toO(C), then takeS = C and we are done. Oth
erwise, there exists aτ � t , a coalition of agentsC′ ⊂ [M(τ) ∪ F(τ)] ∩ O(C), with
O(C′) ⊂ O(C), and a feasible matching plan,µO(C′), such that:

πO(C′)(µO(C′)) > πO(C)(µO(C))
O(C′) � π(µ)O(C′). (23)

That is,µ is also S4 blocked byO(C′) throughµO(C′). Again, if µO(C′) satisfies S4 in the
game withO(C′), the claim in the proposition is true withS = C′. Otherwise we can repe
the argument for a subcoalition of agents inO(C′). Since remaining unmatched eve
period satisfies S4 in a game with a single agent and her successors, we will eventuall

a coalition of agents that blocksµ through a plan which is consistent with S4. �
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It is important to emphasize that self-sustainability is not a vacuous requirement
definition for S3. It is only the additional limitation on deviating plans incorporated in4

which yields self-sustainability for free.
S4 also has the desirable interpretation that it can be viewed as the core of the age

game, with one qualification: only coalitions of the formO(S), whereS ⊆ M(t) ∪ F(t)

for somet , can deviate.
Before we discuss the existence of matching plans that satisfy S4, we note that S4 does

rule out the “incredible” deviation in the example of matrix (18). It can be shown tha
matching planµG–S, which specifies the Gale–Shapley matching in both periods, is i
S4 set. Rather than illustrating this, we prove, as part of the next theorem, that th
general phenomenon: any (not necessarily identical) sequence of Gale–Shapley ma
is in S4.

5.1. Existence of S4

One desirable feature of S4 is that it always exists in a matching market with a fin
number of periods. We have the following theorem.

Theorem 4. In a matching game with a finite number of periods, any sequence of Gale–
Shapley stage matchings satisfies S4. Therefore, the set of matching plans that satisfy S4 is
non-empty.

Proof. Let µG–S be a matching plan in the agent-form, such that for allt , µG–S(t) is a
Gale–Shapley matching. SupposeµG–S is not in S4. Then, there is a coalition of agen
S ⊆ M(t) ∪ F(t), for somet � T , and a feasible matchingµblock

O(S) for O(S) such that

πO(S)

(
µblock

O(S)

)
> π

(
µG–S)O(S)

. (24)

µG–S specifies a Gale–Shapley matching in the last period. Thus, for any coalition of a
C in the last period and any feasible matchingµC ,

π(µC) �> π
(
µG–S)C

. (25)

If C ⊆ [M(T ) ∪ F(T )] ∩ O(S), (24) and (25) together imply:

πO(S)

(
µblock

O(S)

)C = π
(
µG–S)C

. (26)

Thus, the blocking planµblock
O(S) must be identical toµG–S in the last period. We now

need only to establish the inductive step that if, for someτ > t and all C ⊆ [M(τ) ∪
F(τ)] ∩ O(S),

πO(S)

(
µblock

O(S)

)O(C) = π
(
µG–S)O(C)

, (27)

then, for allC′ ⊆ [M(τ − 1) ∪ F(τ − 1)] ∩ O(S),

πO(S)

(
µblock

O(S)

)O(C′) = π
(
µG–S)O(C′)

. (28)

To see why the claim is true, first notice thatO(C′) ⊆ O(S), implies:
( ) ′ ( ) ′
πO(S) µblock
O(S)

O(C ) � π µG–S O(C )
. (29)
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Writing the payoff of agents at timeτ − 1 as the sum of their immediate payoff plus t
payoff of their immediate future selves, we have

πO(S)

(
µblock

O(S)

)S(τ−1) = π
(
µblock

O(S)(τ − 1)
)S + πO(S)

(
µblock

O(S)

)S(τ)
, (30)

π
(
µG–S)M(τ−1)∪F(τ−1) = π

(
µG–S(τ − 1)

) + π
(
µG–S)M(τ)∪F(τ)

. (31)

(29)–(31) and (27) imply that for allC′ ⊆ [M(τ − 1) ∪ F(τ − 1)] ∩ O(S),

π
(
µblock

O(S)(τ − 1)
)C′

� π
(
µG–S(τ − 1)

)C′
. (32)

SinceµG–S(τ −1) is a Gale–Shapley matching forM(τ −1)∪F(τ −1), the above canno
hold with strict inequality. From (30) and (31) we can then deduce that (28) holds.�

Note that, in general, S4 can sustain matching plans which are not merely sequenc
Gale–Shapley matchings. The following is an example:

f1 f2 f3 f4

m1 2,4 1,4 3,2 4,2

m2 3,3 2,3 4,1 1,1

m3 2,2 4,2 3,4 1,3

m4 3,1 1,1 4,2 2,4

(33)

The above stage market has two and only two Gale–Shapley matchings. In the
preferred one,µM, m1,m2,m3, andm4 are paired withf4, f1, f2, andf3, respectively.
In the female-preferred matching,µF, eachmi is matched tofi for i in {1,2,3,4}.

Assume that the above market is repeated twice with no discounting and cons
matching planµ that specifiesµF in period 2. In the first period,µ specifies the unstabl
matchingµ, wherem1,m2,m3, andm4 are paired withf4, f3, f2, andf1, respectively.

In the stage market,µ is not in the Gale–Shapley set because it is blocked bym4 andf3.
Notice, however, that the coalition of agentsO(S), with S = {m4(1), f3(1)}, does not block
µ under S4. This is because a period 1 agent,f3(1), would not agree to the deviation, s
the coalition is ineffective even under S3.

Now, consider the coalition of agentsO(S), whereS = {m2(1), f1(1)}. O(S) would
block µ under S3: πO(S)(µ

′
O(S))

S = (6,6) > (6,5) = π(µ)S . It does not block unde

S4: πO(S)(µ
′
O(S))

O(S) = (6,6,3,3) �> (6,5,2,4) = π(µ)O(S). The payoffs are ordered
m2(1), f1(1), m2(2), f1(2). Under the candidate plan,m2(1)’s payoff is 4+ 2. Under the
deviation,m2(1) receives a lower direct payoff from his match, but receives a highe
ternality from the match ofm2(2): m2(1)’s payoff is 3+ 3. Whether the coalitionO(S)

can credibly deviate depends on whether the playerm2 can trustf1 to continue with the
deviation in the second period. S4 limits the trust among agents to the minimum. In p
ticular, a proposed deviation is only credible if the deviating players are made better
every point in time. In the example, playerm2 does not trustf1 becausef1(2) is strictly
better off underµ than under the deviating planµ′

O(S)
. Other deviations can be similar
eliminated.
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6. Comparing definitions of stability

We have discussed five possible concepts of stability for a dynamic matching mark
core, the recursive core, the modified core, S3, and S4. These concepts can be summari
by Table 1.

Table 1 also contains a concept that has not yet been introduced. Blocking coalit
the strict core have to satisfy the more stringent condition associated with S4. However,
neither the grand coalition’s plan, nor deviating plans, have to be time consisten
blocking requirement is made only at the beginning of the game.

In addition to categorizing these concepts, the table shows the inclusion relatio
between these sets of matching plans. The recursive core is a subset of the core,
the recursive core imposes time-consistency. The recursive core is a subset of the3 set,
because S3 only allows for self-sustaining deviations. The S3 set is a subset of the S4

set, because the latter involves a stricter condition for when deviations are effective
stricter condition also explains why the core is a subset of the strict core.

More surprisingly, there is no inclusion relationship between S3 and the modified core
even though S3 imposes the additional condition of dynamic consistency. The explan
lies in the interaction between self-sustainability and time-consistency. Although
consistency tends to reduce admissible matching plans for the grand coalition,
limits the set of coalitional deviations because of self-sustainability. The first effect
to make the S3 set smaller relative to the modified core, while the second tends to m
larger. A similar explanation applies to the lack of a inclusion result between the stric
and S4.18

Table 1
Definitions of stability

Does not impose time consistency Imposes time consistenc

Does not impose CORE RECURSIVECORE

self-sustainability Pareto optimal ⊇ May be empty
Pareto optimal

= ⊆
Imposes MODIFIED CORE S3

self-sustainability � Non-empty under condition
May not be Pareto optimal

⊆ ⊆
Imposes “stricter” STRICT CORE S4

blocking condition May not be Pareto optimal � Non-empty

⇒ May not be Pareto optimal

Self-sustainability

18 Similar inclusion relationships apply to the non-cooperative notions of: strong Nash, perfect strong, co

proof, and perfect coalition-proof equilibrium.
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Finally, the table notes that, in contrast to the core and the recursive core, ma
plans that satisfy either S3, S4, or the strict core, may not be Pareto optimal with respec
players (not agents).

6.1. Other notions of credibility

The above concepts implicitly make different assumptions regarding the option
are available to deviators following a deviation from a candidate stable plan. In S3, players
in a deviating coalition are prevented from further deviating with players outside o
coalition. In S4, players in a deviating coalition are allowed to interact with non-devia
in periods subsequent to the deviation. The outcome of this interaction is, however, l
to a return to the original plan.

In a static framework, two concepts which allow for more general deviations from
viations are Zhou’s (1994)bargaining set and Klijn and Massó’s (2003) concept ofweak
stability. These concepts allow members of the deviating coalition to form a pact t
viate further with players not included in the coalition. These concepts do not, how
require deviations from deviations to themselves be stable to yet further deviations
is, they do not impose self-sustainability. Self-sustainability is a requirement that all
tions be treated uniformly. It is particularly important in a dynamic environment w
time-consistency is a natural minimal requirement for all coalitions—including devia
from deviations—to be credible.

Also in a static framework, Chwe’s (1994) concept offarsighted coalitional stability
allows for arbitrary deviations from deviations and incorporates strategic behavior t
similar to self-sustainability. In his concept, players may deviate in order to trigg
series of further deviations from which they will ultimately benefit. Bhattacharya (2
proposes a modification of Chwe’s (1994) stability concept by introducing the credi
requirement that only undominated deviations be considered. In a recent paper, K
and Ray (2003) look more closely to the idea of sequences of coalitional deviation
dynamic model where coalitions form and break over time.

In this paper, we are interested in deviational credibility in a dynamic environment
concepts focus on time-consistency and self-sustainability. Though time-consiste
self-sustaining, one criticism of plans in S3 is that deviations do not have to immune
proposals to deviate with players from outside of the deviation. S4 partially addresses thi
criticism. It allows deviations to return to the original plan. If the original plan is “stab
returning to it is certainly a credibile threat that deviations have to consider.

S4 does, however, rule out more general deviations from deviations. In non-coope
game theory, different beliefs held by players off the equilibrium path can support diff
equilibrium behavior. Here, different beliefs about what further deviations are pos
would give rise to concepts of stability that are different from S4. Further, when assumin
that a deviating coalition may choose to return to the original plan, S4 is silent on whethe
agents who do not belong to the deviating group will consent. If, following the devia
these agents re-match among themselves, they might not be willing to return to the o
plan. These limitations notwithstanding, the simplicity of S4—it is a simple modification o
the core of the agent-form—and the existence result, make it a starting point for addr

the issue of stability in a dynamic environment. Developing a stability concept in a dynamic
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market that allows for time-consistency, self-sustainability, and a more general devi
from deviations, remains a challenge.

7. Conclusion

This paper considers various notions of stability in dynamic matching markets
dynamic nature of the market introduces a number of issues that are not present i
tic model. First, time consistency is an important requirement if players cannot cre
commit to a matching plan at the outset of the game. Second, what constitutes a c
deviation can have important implications on the predictions of the model, even mo
than in a static market.

We showed how S3 may be a more appropriate stability concept than the recursive
if credibility requires deviations to be self-sustaining. If, in addition, credible deviat
must be robust to proposals to rejoin the original plan, then the predictions of S4 are more
relevant. Which concept is appropriate depends essentially on the amount of comm
that is possible among the players.

The agent form representation of the dynamic game proved a powerful tool for in
gating these different credibility issues within a unified framework.
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