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Abstract

A dynamic two-sided matching market is considered. We examine two existing notions of
stability—the core and recursive core—for this multi-period market and argue that they both have
limitations. We define two new notions of stability and label thegf;sustaining stability andstrict
self-sustaining stability. Both concepts can be viewed as the recursive core with more stringent con-
ditions for when deviating coalitions are effective. We show that these concepts overcome some of
the weaknesses of the core and the recursive core. We also provide conditions for the existence of
our concepts.
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1. Introduction

Many trading arrangements in the real world do not satisfy the assumptions of a Wal-
rasian model of exchange. A special class of such arrangemetvis-8ded matching
markets. These markets are characterized by two important features. First, participants be-
long to two disjoint sets; they cannot switch from one side of the market to the other no
matter what the market condition. A second feature is the bilateral nature of exchange; the
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contrast is with centralized goods markets where the identity of one’s trading partner is
a matter of indifference. Examples of two-sided markets include many labor markets, as
well as auction markets.

In this paper, we are concerned with a subclass of two-sided matching markets, namely
those in which matches aome-to-one: each participant may be matched with at most one
partner from the other side. Historically, the two sides of the market have been labeled the
males and thefemales, and the model termed rmarriage market. In many applications,

a many-to-one relationship is more realistic but the issues we are concerned with can be
discussed in the simpler class of one-to-one matching markets.

Any testable theory of a matching market must place some restrictions on the kind of
outcomes that one expects to observe. An obvious restriction is that outcomes be “stable.”
In thinking about stability, we have in mind cooperative concepts similar tedghe An
outcome that is not in the core is, by definition, susceptible to blocking by rational players.
In general, there will of course be many other restrictions imposed by the incentives and
rules associated with a particular trading institution. We consider the requirement of stabil-
ity because it represents a minimal constraint in markets where participation is voluntary.
In addition, the cooperative notion of stability only requires a very general description of
the game and so is applicable to many markets, whereas issues of non-cooperative behavior
depend crucially on the particular trading and information structure under consideration.

A large and very successful literature has considered stability in the special case of
a static market (Roth and Sotomayor, 1990 provide an excellent summary). Existence of
the core has been established and many of its interesting characteristics noted. In many
markets, however, participants trade repeatedly. Indeed, investigating stability in a dynamic
market is a necessary first step to studying more realistic models where agents have to learn
about the values of matches as they occur over time.

When there are multiple periodsiratching plan specifies a partner for each participant,
at each point in time. An obvious candidate notion of stability is the core over the set of
feasible matching plans. The core, however, has a particularly unsatisfactory property in a
dynamic game: it can admit matching plans that are not “time-consistent.” Unless players
can make binding agreements, elements in the core may be blocked at some later point in
time.

Therecursive core—defined by Becker and Chakrabarti (1995) in the context of a cap-
ital accumulation model—overcomes this. In our context, it requires that the continuation
of a matching plan be in the core of the continuation market at all times.

Unfortunately, the recursive core is frequently empty. The reason is that it admits “in-
credible” deviations. In judging the stability of the grand coalition’s matching plan—that
is, the plan for all players—the recursive core requires that the plan be immune to blocking
by coalitions at every point in time. However, no deviating coalition is subject to the same
requirement.

The issue of what constitutes a “credible” deviation turns out to be very important in a
dynamic matching market (in ways that are not apparent in a static market). Appropriately
modifying the recursive core to deal with issues of credibility leads to a stability concept
that is always non-empty.

We begin by imposing the requirement that blocking coalitions be “self-sustaining.”
They must choose matching plans in which no subset of the coalition can reach an agree-
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ment to deviate from the deviation. The sub-coalitions have to satisfy the same requirement,
and so on. This is the cooperative analogue to the concequatition proofness of Bern-
heim et al. (1987¥.

We call our concepself-sustaining stability. By limiting the plans of deviating coali-
tions, we obtain a set of matching plans that is (at least weakly) larger than the recursive
core. Even so, an example shows that there might be dynamic matching markets with no
self-sustaining stable plan. Non-existence highlights a second aspect of credibility.

Self-sustaining stability implicitly stipulates that coalitions that deviate do so thereafter:
members of the blocking coalition do not have to be immune to proposals to rejoin the
grand market in some later periddhis amounts to a form of dynamic commitment for
deviations.

In many situations, this degree of commitment is not possible. We introduce a sec-
ond definition that imposes a stricter requirement for when a deviating plan is credible.
It exists under general conditions. For want of a better term, we refer tositiat self-
sustaining stability. Under this new definition, a deviation must satisfy the conditions of
self-sustaining stability, and in addition, it must be better—relative to the candidate stable
plan—for each member of the deviating coalitiaheach future point in time. A deviating
coalition is now only credible if it can commit to remaining away from the grand market.
This enlarges the set of stable plans for the grand coalition. Whether self-sustaining stabil-
ity or its stricter version is appropriate will depend on the level of commitment available to
the participants of the market.

The paper proceeds as follows. In the next section, we describe a dynamic matching
market® Section 3 presents the agent-form of the game and illustrates some of the issues
that arise when defining stability in a dynamic matching market. In Section 4, we introduce
the concept of self-sustaining stability. Sections 5 introduces the definition of strict self-
sustaining stability. Section 6 discusses our concepts and relates them to other concepts in
the literature. Finally, Section 7 concludes.

2. Dynamic matching markets

We denote the two disjoint, finite sides of the market, ittedes and thefemales, by
M ={myi,mp,....,mpy}andF ={f1, fo...., fir|}, respectively. We will refer to the set
of players,M U F, as thegrand coalition. The market operates fdr finite periods with
players free to rematch at the end of each petidtie outcome each period is referred to
as amatching.

1 The self-sustaining idea can be applied to a static cooperative game. Ray (1989) showed, however, that this
additional requirement does not alter the core. We show that it does matter in a dynamic game when it is imposed
in conjunction with time-consistency.

2 Of course, this criticism also applies to the core and the recursive core.

3 Afew papers in the matching literature deal with a notion of dynamics different from ours. For example, Roth
and Vande Vate (1990) and Blum et al. (1997) are interested in decentralized, dynamic processes by which stable
matchings can be reached. We are interested in stable mafghitgjn a multi-period market.

4 A previous version of this paper, Damiano and Lam (2001), contains some results for the infinite-horizon
case.
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Definition 1. A matching is a one-to-one functiop satisfying the following:

w:(MUF)— (MUF), (1)
u(p (@) =1i, (2
if um)#2meM, thenu@m)eF, 3)
if u(f)#fekF, thenu(f)eM. (4)

w(i) =i implies that individual is unmatched; we will also refer to such a player as being
self-matched or single. We denote the set of all possible matchings\dy A matching plan
is simply a matching for each period.

Definition 2. A matching plan is a functiony : Ny — M, whereNry is the set of natural
numbergl,2,...,T}.

We focus on repeated matching markets. Each period, players have strict preferences
over matches with members of the other side of the marketzigh in RMVFI pe a
vector of period payoffs for each player from matching with the partner specified under
w in M. Throughout the paper, we assume that the outside option associated with being
single is normalized to zero for all players. If any element ¢f) is strictly negative, we
say thatu is notindividually rational.

Let B € [0, 1] be the discount factor and define the payoff functimnpver matching
plans, to be the sum of discounted period pay®fs:

T
m(p) =Y B (n®). (5)
=1

For a subset of playerS, we use a subscript to denote the above objects restricted to
players inS. For example M is the set of possible matchings among players.in

3. Agent-form representation

The notions of stability that we will introduce are most tractable when stated in a trans-
formed gamé.We refer to this transformed game as #igent-form of the dynamic market.
It is obtained by assuming that each player is represented by a sequence of agents—one
for each time period of the market. We refer to a participant in the multi-period market as
aplayer and reserve the teragent for some player at a particular time.

The notation for the agent-form is involved, but an example will follow. Defing= i
foralieMUF andallrt=1,...,T. ForanySC M UF,letS()={i(¢) | i € S}. The

5 In our notation,u is a particular element of1; while a boldgu is a mapping from time ontd 1. Similarly,
7 is a function over the set of matchings; while balds a function over the set of matching plans.

6 In a static market, ordinal preferences suffice for many results. We assign values to period matchings to allow
payoffs to be aggregated over time.

7 Although we will continue to discuss stability in the context of a two-sided matching market, the definitions
to follow can also be applied to any dynamic cooperative game.
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set of agents in the agent-form M U F, whereM = ML) U M) U ---U M(T) and
F=FQ)UFQ@U---UF(T).

Previously, we defined a matching plan to be a function from time to a matching
outcome for the players. We abuse notation and now define a matching:ftiarbe a
one-to-one function satisfying the following:

p:(MUF)— (MUF), (6)
r(p(i®)) =i, @
if w(m(1)) #m@) e M(r), thenu(m(r)) € F(1), (8)
if w(f(0)# f@)eF(r), thenp(f(t))eM(@). 9)

This is the usual definition of matching in a static market—applied to agents rather than
players—with the additional restriction that only couples at the same time can match.

Let M(¢r) denote the set of possible matchings betwé£ft) and F(¢). The set of
feasible matching plans i:‘[:[thlM(t) =M(@Q) x M(@2) x --- x M(T). We denote the
projection of in []/_; M(z) onto M(z) by u(z).8

As before, the vectar (u (1)) in RIMYFI specifies the period payoffs at timeWe abuse
notation by usingr to denote the payoff function in the agent-form game. Previously, we
usedr to denote a vector ilRIMYF1 representing the present discounted payoffs for the
players. In the agent-form, we treat each player as a sequence of agents sow a
vector inRMYFI representing the payoffs to agents. It is defined as follows:

w(uMOVFO =" BT (u(r)), (10)

>t

wherex? is the projection of a vector € RIMYF| onto the subspade!S!.

For a subset of agentsfrom M U F, =g andug are defined as in Egs. (6) to (10),
restricted to agents ifi.

To illustrate these new definitions, consider the following 2 matching market. The
matrix below denotes the period payoffs. Ttiej)th cell contains two numbers, being the
payoffs to malen; and femalef;, respectively, from a match with each other. Assume that
this one-shot market is repeated twice with no discountihg (1):

bl f2
mi |5 -1|-15 (11)
my | —1,5 |5, —1

Since players receive a payoff of zero when they remain single, the unique element of
the Gale—Shapley set (in the one-shot market) specifies that players remain self-matched:
(uSn9ley =i, i € (M U F)}, which yieldsr (x5"9'¢) = (0, 0, 0, 0).

In the agent-form of the two-period repeated game, the set of male agehsHs
{m1(1), m2(1), m1(2), m2(2)}. Each male player;, is represented by two agents; (1)

8 This notation is consistent with our previous view of a matching plan as a mapping from time to the set of
possible period matchings.
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and m;(2). Similarly, F = {f1(), f2(1), f1(2), f2(2)}. The payoffs in the agent-form
game can be partially represented by the following matrix:

AD L) AR (2

m1(1) X X

m2(1) X X (12)
m1(2) X X 5-11| -1,5

m2(2) X X -15]5-1

For the agents in period 2, their payoffs are provided by the stage payeffds“used

to denote infeasible matches: matching plans do not allow agents from different periods
to match. What about the payoff to a period 1 agent,sa§l)? It consists of two com-
ponents: the utility he obtains from matching with some period 1 agent, and the utility
he obtains from the match of his future self. Consider, for example, the matchingplan
given by {u(m1(1)) = f1(1), p(m2(1)) = f2(1), p(m1(2)) = f2(2), p(m2(2)) = f1(2)}.

The utility of agentn1(1) is the sum of 5—being the benefit from matching with{1)—

andp x (—1)—being the discounted utility that agent (1) obtains fronmn1(2)’s match

with f»(2). Discounting in the original dynamic market has been transformed in&s-an
ternality between agents in the agent-fofrithese externalities flow from later times to
earlier ones.

3.1. Existing notions of stability in agent-form

In the context of a single-period market, Gale and Shapley (1962) cossbdkrmatch-
ings. These are matchings that are individually rational, and that cannilibbieed by a
male and female pair. A pair playets, /) blocks a matchinge, if each of them prefers
the other to her partner under The notion of blocking can be extended, naturally, to coali-
tions of more than two players. There of a matchings market is the set of individually
rational matchings that are not blocked by any coalition of agents. It is well known that the
set of stable matchings is equivalent to the core—no matching can be blocked by a larger
coalition if it is not blocked by a male and female pair—and that this set is non-empty.
To avoid confusion with the multi-period market, we refer to the core in the single-period
market as th&ale-Shapley set.

An obvious notion of stability in our dynamic market is the core over the set of matching
plans. In contrast to a static market, coalitions of more than a male and female pair do
matter in a dynamic market. They provide the possibility of altering partners and so can
achieve payoffs that a couple cannot. Next, we formally define the core over the set of
matching plans in terms of blocking conditions in the agent-form. Later, we will write
alternative definitions of stability in a dynamic market as modifications of the core of the
agent-form game.

9 Because the payoffs to agents in period 1 depend on the matches of agents in period 2, the payoffs cannot be
completely represented in the matrix of (12).
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The following operatorQ : 2¥VF . 2MUF il prove useful in the definitions that
follow:

0(S)={i(t)eMUF|i(r)eSandr<t}. (13)
For any set of agents, O (S) extends the set to include the future selves of agenss in

Definition 3. A matching plaru € [ [, M(z) is in thecore of the dynamic market if there
does not exist a coalition of agenfsC M (1) U F(1) and a feasible matching plan for
O(S), M’O(S)’ such that

o) (hos)® > T (w)S. (14)

In the above definitionxs, ..., x,) > (y1,..., yy) denotesy; > y; foralli =1,...,n
andx; > y; for somei. Blocking from the core must involve a collection of period 1 agents,
together with their successors. In considering whether this coalition is effective, only the
payoffs of agents in period 1 matt&t.

For the two-period example of (11), it is easy to see that a core matching plan,
10 involves implementing the male-preferred matchipgmi) = f1, u(m2) = f>} in
one period and the female-preferred matchipgm1) = f2, u(m2) = f1} in the other.
There are two such plans. At the beginning of the game, these plans achieve the payoffs
7 () = (4, 4, 4, 4), and cannot be blocked by any coalition.

Unfortunately, one would not expect to observe such an outcome in any play of the game
if matching plans are not binding. In the second period, one side of the market always has
an incentive to withdraw participation and to renege on the plan agreed upon in pétiod 1.

A concept that does impose stability at every point in time isrdoersive core of
Becker and Chakrabarti (1995). This concept is closely related teethential core of
Gale (1982). Both are motivated by the lack of trust in a general equilibrium model. As we
did for the core, we can define the recursive core of a dynamic matching market in terms
of blocking conditions in the agent-form.

Definition 4. A matching plarnu € [ [, M (z) is in therecursive core of the dynamic market
if at all timesr < T, there does not exist a coalition of agerfsc M (¢) U F(¢), and a
feasible matching plan fo® (S), ps), such that

HO(S)(ILO(S))S > ()S. (15)

In this definition, a deviating coalition is made up of agents of the same pefiad,
M () U F(¢), together with their successors. It differs from the definition of the core in that

10 Notice that this definition is not simply the usual definition of the “core” applied to the agent-form game.
Only certain coalitional deviations are allowed—namélyS) whereS € M (1) U F(1)—and only the payoffs

of certain agents in such deviations matter—namely those in

11 1t may be thought that randomization could provide a solution to this problem. Players could agree to im-
plement matchings based on a publicly observable flip of a coin each period. This would give each player an
expected payoff equal to the payoff frgm¥°®. However, this requires that the outcome specified by the coin flip

be enforceable, which is counter to the spirit of the paper. We want to place some restrictions on the matching
plans which may be observed when enforceability is assumed not to be possible.
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it allows ¢ > 1. Like that definition, however, only the payoffs of agentssimatter. The
condition of dynamic consistency in a multi-period game has been expressed as a static
condition in the agent-form.

In a dynamic matching market, the recursive core demands that a matching plan be
in the core at the beginning of the market, and that its continuation be in the core of the
continuation market at all points in time. It is clear that the recursive core is a refinement,
or a subset, of the core. In the two-period example of matrix (11), both core matching plans
specify that players be matched in the second period. This is inconsistent with stability in
the last period, which requires all players to remain single. The recursive core is thus empty
in this example.

Once again, this result seems unsatisfactory. Intuitively, the matching plan which spec-
ifies that participants remain unmatched in both periods appears to be robust to “blocking
by rational players.” Yet, this matching plan is not in the recursive core. Denote this match-
ing plan byus"9€. In period 2, the continuation gfS"9'¢ s consistent with the recursive
core since it specifies a Gale—Shapley matching in the final period. However, in period 1,
psindle s plocked by the grand coalition playing a core matching plans, which we have
already argued does not satisfy the requirement of time-consistency.

This highlights an inconsistency associated with the recursive core: coalitions are al-
lowed too much freedom in choosing the deviating matching plan. In judging the original
matching plan, the recursive core requires that the plan be immune to blocking by coali-
tions. However, no deviating group of players (including the grand coalition) is subject to
the same requirement.

4. Self-sustaining stability

The example and discussion in the previous section suggest that, for blocking coalitions
to be credible, they should themselves be stable against further deviations. In fact, to be
consistent, we should not only demand that deviations be credible, but that any deviation
from a deviation also be credible, and so on. We refer to this sequence of requirements as
self-sustainability.

The non-cooperative concept adalition-proof Nash equilibria due to Bernheim et al.
(1987) is motivated by such considerations. Ray (1989) defines the cooperative analogue
to coalition-proof Nash equilibria and label it thedified core. A matching plan is in the
modified core if there does not exist any “credible” blocking coalition. Blocking coalitions
are “credible” if they choose matching plans in which no subset of the coalition can reach
an agreement to deviate from the deviation. The sub-coalitions have to satisfy the same
requirement, and so on. The concept is formally defined inductively, beginning with the
singleton coalition. Ray shows, somewhat surprisingly, that self-sustainability in a static
game has no impact: the modified core is equivalent to the’éd show that Ray’s result
no longer holds in a dynamic market when time consistency is also imposed. In a dynamic

12 This is not true in the non-cooperative setting, where the set of coalition-proof Nash equilibria—the non-
cooperative analogue of the modified core—in general differs from the set of strong Nash equilibria—the non-
cooperative analogue of the core.
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market, time-consistency should be a necessary condition for coalitional credibility, and
not just a requirement on the grand coalition’s plan. Self-sustainability, when interacted
with time-consistency, does in general reduce the number of credible deviations.

Next we formally defineself-sustaining stability (S°). It is essentially the cooperative
analogue to the concept pérfect coalition-proofness for extensive form games of Bern-
heim et al. (19873 Recall that the modified core is obtained by imposing the idea of the
core, not only on the grand coalition, but on deviating coalitions, as well as on deviations
from deviations, and so on. In this sense, it is the “self-sustaining cotés’ &btained by
imposing the idea of the recursive core, not just on the grand coalition, but on deviating
coalitions, and on deviations from deviations, and so on. It can be viewed as the “self-
sustaining recursive core.” The definition below is recursive, both through the size of the
coalition, as well as through time.

Definition 5.

(1) For coalitions of agents of the for@({i}), wherei € M U F, the planu(j) = j, for
all j € O({i}), satisfiesself-sustaining stability with respect ta. For any coalition of
agents from the final period,c (M (T) U F(T)), p g satisfiesself-sustaining stability
if it is in the Gale—Shapley séf.

(2) Consider a coalition of the forr@(S), whereS c (M (¢) U F(¢)) for somer. Assume
that self-sustaining stability has been defined for all coalitiGhsvhereC C S or
C C (M(7) U F(r)) for somer > ¢. A matching plar s, is self-sustaining-stable
with respect taS if:

(8) There does not exist a coalitiGhwith C ¢ Sor C C (M (r)U F(t))N O(S), with
a feasible matching plag, , which satisfies self-sustaining stability {6y such
that

o) (o) > Tow o) - (16)

(b) There is no other matchirygjO(S) satisfying (a) such that

S
7o (foes) > Tos) (o)’ (17)

Like the recursive core, Sallows deviating coalitions of the forn®(S), where

S C (M) U F(t)) for somet. Also, in considering whether the deviation is actually
effective, only the payoffs of the agents at the time of the deviatioare relevant.
The difference is that Brequires deviating plans to be self-sustaining, whereas the
recursive core does not.

13 As an aside, if the Sis the counterpart of perfect coalition-proof equilibria, we can think of the core as

the counterpart of strong Nash equilibria. Similarly, the recursive core can be thought of as the analogue to
Rubinstein’s (1990) concept afrong perfect equilibrium.

14 strictly speaking, this statement is an immediate consequence of the equivalence between core and modified
core—self-sustainability does not “bite” in a static market (Ray, 1989)—rather tHefingtion.
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In a finite-horizon market, we can construct a matching plan in fheeSvia backward
induction® The recursion begins with singleton coalitions in periadt proceeds through
the size of the coalition until the grand coalition is reached, and then considers the two-
period market beginning at timg — 1, and so on.

Applying this concept to the two-period example of (11) is relatively simple. One can
verify that the unique plan in%s pS"9'ewhich specifies that all players remain unmatched
in both periods. This is what we had claimed to be the intuitive outcome of that market.
The plan survives because the deviating plan which blge¥'€ from the recursive core
is not admitted under3s

4.1. Existence of $

The following lemma, needed to prove the subsequent proposition, is a strengthening of
thestrong stability property for a special class of preferences. The strong stability property
(see Theorem 3.4 in Roth and Sotomayor, 1990) states that unstable matchings either fail
individual rationality, or are blocked by a pair of agents that would be better off under some
stable matching. The lemma below strengthens the claim establishing that the blocking pair
will be indeed matched under that stable matching.

Lemma 1. In a static market, suppose that for all S € M U F, there exists a unique Gale—
Shapley matching among playersin S, and let ©&S be the Gale-Shapley matching for
M U F. Then, for any individually rational, non-Gale-Shapley matching © among M U F,
thereisaplayer i € M U F such that {i, u®S(i)} blocks ..

Proof. The claim is obvious when eithédf or F is a singleton. Suppose the statement is
true if the market is restricted to any coalitiSrc M U F. We prove the inductive step that
the statement is true when the market consists of particigdntsF .

Let u be an individually rational, non-Gale—Shapley matching #6tJ F. Let M, ,
M_, and M.. denote the sets of males that strictly prefieto 1.CS, strictly prefery &S
to u«, and are indifferent between the two matchings, respectivgly.F., and F. are
defined analogously. Since preferences are strict, ob . U F-, u(i) = u©5(). Thus,
M, UM_ U F, UF. are matched amongst themselves under potind;.©S. Moreover,
because.®S is a Gale—Shapley matching(i) € F< for all i € M., andu(i) € M~ for
allieF..If u®S@i)e M. UF. foranyi e M. U F_, then bothi and.®S(i) strictly
prefer.®=S to 1 and we are done. Suppose otherwise iat>(i) € F, fori e M-, and
uCS(@i) e M, fori e F.. Consider a matching market restrictedMt, U F. . Sinceu
is individually rational ang.®S is the only stable matching/~ U F,. # @ by the strong
stability property. Bothu®S and . define a matching for this smaller market. Moreover,
u®S is also a Gale—Shapley matching for this smaller market. Since there is a unique
Gale—Shapley matching by assumptignis not a Gale—Shapley matching in the smaller
market. Thus, there is a playee M_ U F,_ such thafi, u®5(i)} blocksu. O

15 solving for $ in an infinite-horizon game is more difficult. In Damiano and Lam (2001), we employ the idea
of dynamic programming to characterize thes®t when the horizon is infinite.
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The following proposition provides conditions for the existence®f S

Proposition 2. There exists a matching plan which satisfies S° if at least one of the follow-
ing conditions hold:

(a) Thediscount factor g is sufficiently close to zero.

(b) Therearelessthan, or equal to, two players on each side of the market.

(c) All feasible matchings are individually rational and for all subsets of players, S C
M U F, thereis a unique Gale-Shapley matching among the players.

(d) All playersremaining single is a Gale-Shapley matching.

Proof. (a) This is an obvious consequence of strict preferences and the fact that the Gale—
Shapley set is non-empty.

(b) The claim is obvious when there are less than two players on either side of the
market. The unique plan in*®onsists of repeating the unique Gale—Shapley matching in
every period. Consider a market with two players on both sides of the market. We show by
induction that any plan which consists of repeating the same Gale—Shapley matching each
period is in $. WhenT = 1 any stable matching is in3SFor T < T, assume that any
sequence of identical Gale—Shapley matchings is if 8r the market withT periods.

Take uCS to be a sequence df identical Gale—Shapley matchings®=S can only be
blocked by a coalitionD(S), whereS € M (1) U F(1). If S has strictly less than four
agents, there is a unique matching pjaps, which satisfies $with respect taS, and
Roesy (D) == poe(T). Thus,0(S) cannot blocku®= if xS5(1) is a Gale—Shapley
matching. It remains to show that there cannot be a different matching pla timas
Pareto dominates (with respect (1) U F (1)) the proposed plan. If the unique Gale—
Shapley matching is for all agents to stay single, a backward induction argument shows
that no agent can ever be matched irfgBn. If in a Gale—Shapley matching some agent

is not single, then at least one agent must be receiving his/her maximal payoff sfhas,
cannot be Pareto dominated.

(c) We show that the matching plan that specifies the unique Gale—Shapley matching
n®S in each period is the only element of thé &t. Notice that for markets with just one
male or one female, this statement is trivially true. Now, assume that fér@allvf U F,
the unique & plan for S specifies that the Gale—Shapley matching&‘ou?‘s, be played
every period. We need to show two things for the market with players F':

(i) any plan that specifies a matchipg# 1®Sis notin $;
(i) the planu®S@t) = u®Storallrisin S.

For (i): supposex # u®S is the last non-Gale—Shapley matching played in some
matching plarg in S3, and thatr is the last period in which is played. By Lemma 1,
there is a playersuch thati, £.©5(i)} blocksy. Then, attime, O ({i, ©©S(i)}) blocksp,

a contradiction.

For (ii): for any set of playerss ¢ M U F, the unique 3 plan specifies the Gale—

Shapley matchinq;tg‘S in all periods. Thuss blocksx®S via an admissible plan only if
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ms(u$S) > m(CS)S. Thisis not possible because by assumptiér® is a Gale—Shapley
matching.

(d) By backward induction, the plan which specifies that all players remain single, at all
points in time, is in the $set. O

If players are sufficiently impatient (condition (a)), the dynamic game effectively be-
comes a sequence of static markets. Non-emptines$ follBws from the non-emptiness
of the Gale—Shapley set. With few players (condition (b)), the number of possible devia-
tions are sulfficiently limited that any plan that repeats the same Gale—Shapley matching is
in S3.

These conditions are restrictive and it is not difficult to construct an example in which
none of the conditions are satisfied, and in fact no matching plan satisfiSsih an ex-
ample follows. It will provide some intuition for why condition (c) implies existence. More
importantly, it will also serve to motivate our definition sifict self-sustaining stability.

The following stage-game is repeated twice, with no discourting 1):16

fi fo fz fa
m [L1]11(32]21
my | L1 11]21]32 (18)
m3|23|1,1|51|15
mg | 1,21 2,311,551

This stage game has a unique Gale—Shapley matchi'gS(m1) = f3, uCSm2) = fa,
uCS(ma) = f1, nS(ma) = f2}. Any candidate for inclusion in Smust specify this
matching among agents i (2) and F(2). Consider a matching plan that specifies the
Gale-Shapley matching in both periods. Denote this plap®y. It is blocked by the
coalition of 8 agent®(S), whereS = {m3(1), ma(1), f3(1), fa(1)}, playing the follow-
ing S plan: (uSeshm; (1) = fi(1), i = 3,4; p30"(m;i(2) = £;(2), i, j € {3,4} and
i # j}. From the perspective of the dynamic market, the 4 plajyiees ma, f3, f4} carry
out one matching in period 1, and switch to another in period 2. This plan gives agents in
S: o) (;LS(')"%{% S =(6,6,6,6) > (4,4,4,4) = 7 (u®S)S. Other candidates for’%an be
similarly eliminated.

Because the candidaté plan specifies the same Gale—Shapley matching in both peri-
ods, no subcoalition can do better by using only one matchixg@) blocks the proposed
plan by playing two different matchings—both of which are in the Gale—Shapley sgt for
Condition (c) implies existence because it rules out this possibility.

Under the assumptions of Proposition 2, there exists a sequence of Gale—Shapley match-
ings which satisfies % However, in general, a matching plan might belong Yee@en if

16 This example does not satisfy the assumption of strict preferences over period matches. It can be easily
modified to satisfy strict preferences without changing any of the conclusions. We do not do so in order to
simplify the presentation of the example.
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it is not a sequence of Gale—Shapley matchings. We illustrate this claim with an example.
Consider the following stage game repeated twice with no discounting:

fi o f3
mq 1,5 | 51|22
moy | =1,6| 15|51
ms| 51 |22] 15

(19)

The stage game has three Gale—Shapley match{igsS(m1) = f1, 1% S(m2) = fo,
i S(m3) = f3}, (A S(m1) = f2. A8 S(m2) = f3, 4% S(m3) = f1}, and {&Sm1) =
f3, 18 S(m2) = fo, 16 S(m3) = f1}. Consider a fourth matchingi(m1) = f1, L(m2) =
f3, m(m3) = f2} which is not Gale-Shapley because it is blockedrnbyand f3. The
matching plan in whichz is implemented in the first period followed ki*~S in the sec-
ond period, yields a payoff vect@®, 6, 3, 10, 7, 6) to (m1(1), m2(1), m3(1), f1(1), f2(1),
f3(1)) and, it can be verified, satisfie$.Sotice thatn1 and f3 do not block the proposed
matching plan. The gain t@gz from matching tonj rather thanmy in the first period, is
smaller than her loss from matchingit instead ofn3 in the second period.

5. Strict self-sustaining stability

The non-existence example of the previous section suggests a criticisf wh&n
a deviation occurs, only members of the deviating coalition may contemplate deviations
from the deviation. Members of the deviating coalition are prevented from forming a pact
to deviate further with someone not included in the coalitibn.

In the example, the candidate plar$=S is blocked by a deviating plan which sat-
isfies § but may nevertheless be “incredible.” At time= 1, it is certainly true that
the pIan;LS(')"{';gh dominates remaining in the grand market; that is, agent$ benefit
from the deviation. However, at time= 2, agents inO(S) — S receive a payoff vector
of (1,1,5,5). The payoffs are ordered:3(2), ma(2), f3(2), fa(2). From the perspec-
tive of agents{ms(2), m4(2)}, they would have done better under the candidate plan
unCS: nO(S)(;Lsovgi;‘;h){mdzhmét(?)} = (1,1 < (2,2) = 7 (u&S)im3D.ma2} What would
stop agent$m3(2), m4(2)} from reneging on the deviation agreed to {ays(1), ma(1)},
and trying to return to the grand market in periog 2? In the definition of & blocking
coalitions take the form o (S) but only the payoffs to agents $iare relevant. In terms
of the dynamic market, we are allowing deviating players to commit to match amongst
themselves after the deviation. When this commitment is not possible, certain deviations
allowed under $are not credible.

Our concept oftrict self-sustaining stability (S*) imposes a more stringent condition
for when deviations are credible. A deviating coalition must specify a plan that satisfies the
conditions of self-sustaining stability, and in addition, this plan must be better—relative
to the candidate stable plan—for every agent in the coalition (not just those at the time of
the deviation). In the terminology of the dynamic game, the plan has to be better for all

17 The same criticism applies to coalition-proof Nash equilibria and to the modified core.
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players of the deviating coalitioat all points in time. Credible deviations under*$iave
to account for the possibility that players may return to the grand coalittbensure that
they have no incentive to do so, assuming that they return to the original plan.

Definition 6. A matching plarnu € [, M(r) satisfiestrict self-sustaining stability, if there
does not exist a coalition of agerts= M (r) U F (¢) together with a feasible matching plan
;L’O(S) for O(S), such that

TO(s) (Il«'o(s)) > (0%, (20)
foranyr=1,2,...,T.

There are two apparent differences betwemar®l $. The first can be seen in a com-
parison of the superscripts in Eq. (16) with those in (20). For a coalifios)—where
S C M(t) U F(1)—to block in $, only agents inS have to be better off. For a coalition
0(S) to block in &, all of the agents irO(S) have to benefit; the agents $hmust be in
agreement with all their future selves.

The second difference is that the definition 4fi§ not recursive; deviating coalitions
are not required to propose a “stable” outcome. The following proposition shows that this
second difference is only apparent. This proposition simplifies the us& oh8 does not
have to worry about self-sustainability if the stricter condition on deviating coalitions is
imposed. Intuitively, the definition of “blocking” in‘Sis the standard one (with respect to
the agent-form): all agents in the deviating coalition must do better. Because of this, we
can use Ray'’s (1989) argument for the equivalence between the modified core and the core.

Proposition 3. Suppose that the matching plan p isnot in S*. Then there is some subcoali-
tion § € M(¢) U F(¢) for sometime: < 7', and a matching p sy which satisfies S* with
respect to the agent-form game for O (S), such that

ﬂO(S)(ILo(S)) > ﬂ(ﬂ)o(s)- (21)

Proof. If pis notin &, there is by definition a collection of agertsC M(¢) U F(¢), for
somer < T, and a matching ¢, such that:

o) (o)) > m (). (22)

If wo satisfies & with respect to0(C), then takeS = C and we are done. Oth-
erwise, there exists a > ¢, a coalition of agent’ C [M(t) U F(r)] N O(C), with
0(C’) C 0(0), and a feasible matching plap, ¢, such that:

o) o) > Tow) o)) = m (). (23)

That s, is also $ blocked byO (C") throughp o ¢y. Again, if i o (¢, satisfies $in the
game withO (C"), the claim in the proposition is true with= C’. Otherwise we can repeat
the argument for a subcoalition of agentsd@(C’). Since remaining unmatched every
period satisfies Sin a game with a single agent and her successors, we will eventually find
a coalition of agents that bloclsthrough a plan which is consistent with.S o



48 E. Damiano, R. Lam/ Games and Economic Behavior 52 (2005) 34-53

It is important to emphasize that self-sustainability is not a vacuous requirement in the
definition for $. It is only the additional limitation on deviating plans incorporatedn S
which yields self-sustainability for free.

S* also has the desirable interpretation that it can be viewed as the core of the agent-form
game, with one qualification: only coalitions of the for®@(S), whereS C M (¢t) U F(t)
for somer, can deviate.

Before we discuss the existence of matching plans that saftsfyeénote that $does
rule out the “incredible” deviation in the example of matrix (18). It can be shown that the
matching plan®S, which specifies the Gale—Shapley matching in both periods, is in the
S* set. Rather than illustrating this, we prove, as part of the next theorem, that this is a

general phenomenon: any (not necessarily identical) sequence of Gale—Shapley matchings
isin S*.

5.1. Existence of $*

One desirable feature of*Ss that it always exists in a matching market with a finite
number of periods. We have the following theorem.

Theorem 4. In a matching game with a finite number of periods, any sequence of Gale—
Shapley stage matchings satisfies S*. Therefore, the set of matching plans that satisfy S* is

non-empty.

Proof. Let u®S be a matching plan in the agent-form, such that for at®S(r) is a
Gale—Shapley matching. Suppag€=S is not in . Then, there is a coalition of agents
S C M(t) U F(1), for somer < T, and a feasible matchirm%"(’g')‘ for 0(S) such that

T O(S) (ﬂ?)l?gb > (MGS)O(S)~ (24)

&S specifies a Gale—Shapley matching in the last period. Thus, for any coalition of agents
C in the last period and any feasible matchjng,
c

(o) # m(n®S)". (25)
If CC[M(T)UF(T)]N O(S), (24) and (25) together imply:
mocs (WB75) = m(*9)°. (26)

Thus, the blocking plam%'?‘s’g‘ must be identical tqu®S in the last period. We now

need only to establish the inductive step that if, for some r and allC C [M(z) U
F(D)]INO(S),

o(C S\ O(C
7 o) (mB0g) 7 = m (n®9) 7, (27)
then, forallC’ C[M(t — 1)U F(r — )] N O(S),
o(c’ o(c’
7o) (19260 " =7 (u9) 7. (28)
To see why the claim is true, first notice thatC’) € 0(S), implies:
o(c’ o(c’
7o) (1320 > 7 (nS9) 7. (29)



E. Damiano, R. Lam/ Games and Economic Behavior 52 (2005) 34-53 49

Writing the payoff of agents at time — 1 as the sum of their immediate payoff plus the
payoff of their immediate future selves, we have

7005 (K989 * ™ = 7 (kB9 — 1)* + 7 05) (0, (30)
n(ﬂG—S)M(T—l)UF(T—l) _ n(’LG—S(r _ 1)) + ﬂ:(’LG_S)M(T)UF(T). (31)

(29)—(31) and (27) imply that forall’ C [M(z — 1)U F(r — 1D)]1N O(S),
7 (1508 — 1)) > 7 (n®S - 1) (32)

Sincep®S(r — 1) is a Gale—Shapley matching fof (r — 1) U F (t — 1), the above cannot
hold with strict inequality. From (30) and (31) we can then deduce that (28) hotds.

Note that, in general,“Scan sustain matching plans which are not merely sequences of
Gale—Shapley matchings. The following is an example:

i f2o f3  Ja
mi|24]14(32][42
my | 3,3)23[41]11 (33)

m3 | 2,2]42]|34|13
mag | 3,1 1,1]|42|24

The above stage market has two and only two Gale—Shapley matchings. In the male-
preferred onepM, m1, mo, m3, andmg are paired withfs, f1, fo, and fs, respectively.
In the female-preferred matching™, eachm; is matched tof; for i in {1, 2, 3, 4}.

Assume that the above market is repeated twice with no discounting and consider a
matching plaru that specifieg:F in period 2. In the first periody specifies the unstable
matchingu, wherem1, m2, m3, andmgy are paired withfa, f3, f2, and f1, respectively.

In the stage markep is not in the Gale—Shapley set because it is blocked bgnd f3.
Notice, however, that the coalition of ageiit$S), with S = {m4(1), f3(1)}, does not block
p under 8. This is because a period 1 agey(1), would not agree to the deviation, so
the coalition is ineffective even unde?.S

Now, consider the coalition of agent3(S), whereS = {m2(1), f1(1)}. O(S) would
block & under $: JIO(S)(M'O(S))S = (6,6) > (6,5) = w(n)3. It does not block under
s no(g)(u’O(S))O(5> =(6,6,3,3) # (6,5,2,4) = (n)?®. The payoffs are ordered:
m2(1), f1(1), m2(2), f1(2). Under the candidate plamy(1)’s payoff is 44 2. Under the
deviation,m2(1) receives a lower direct payoff from his match, but receives a higher ex-
ternality from the match of12(2): m2(1)'s payoff is 3+ 3. Whether the coalitiorO (S)
can credibly deviate depends on whether the playecan trustfi to continue with the
deviation in the second period? 8mits the trust among agents to the minimum. In par-
ticular, a proposed deviation is only credible if the deviating players are made better off at
every point in time. In the example, play@r does not trustf; becausefi(2) is strictly
better off unde than under the deviating P|aﬂ0(5)- Other deviations can be similarly
eliminated.
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6. Comparing definitions of stability

We have discussed five possible concepts of stability for a dynamic matching market: the
core, the recursive core, the modified corg, &hd $. These concepts can be summarised
by Table 1.

Table 1 also contains a concept that has not yet been introduced. Blocking coalitions in
the strict core have to satisfy the more stringent condition associated wittH8wever,
neither the grand coalition’s plan, nor deviating plans, have to be time consistent. The
blocking requirement is made only at the beginning of the game.

In addition to categorizing these concepts, the table shows the inclusion relationships
between these sets of matching plans. The recursive core is a subset of the core, because
the recursive core imposes time-consistency. The recursive core is a subset d6#ie S
because Sonly allows for self-sustaining deviations. Thé Set is a subset of the*S
set, because the latter involves a stricter condition for when deviations are effective. This
stricter condition also explains why the core is a subset of the strict core.

More surprisingly, there is no inclusion relationship betwegai® the modified core,
even though 3imposes the additional condition of dynamic consistency. The explanation
lies in the interaction between self-sustainability and time-consistency. Although time-
consistency tends to reduce admissible matching plans for the grand coalition, it also
limits the set of coalitional deviations because of self-sustainability. The first effect tends
to make the $set smaller relative to the modified core, while the second tends to make it

larger. A similar explanation applies to the lack of a inclusion result between the strict core
and $.18

Table 1
Definitions of stability

Does not impose time consistency Imposes time consistency
Does not impose GRE RECURSIVE CORE
self-sustainability Pareto optimal ) May be empty

Pareto optimal
= <

Imposes M>DIFIED CORE 3
self-sustainability ) Non-empty under conditions

May not be Pareto optimal

< <
Imposes “stricter” $RICT CORE st
blocking condition May not be Pareto optimal ) Non-empty
= May not be Pareto optimal

Self-sustainability

18 similar inclusion relationships apply to the non-cooperative notions of: strong Nash, perfect strong, coalition-
proof, and perfect coalition-proof equilibrium.



E. Damiano, R. Lam/ Games and Economic Behavior 52 (2005) 34-53 51

Finally, the table notes that, in contrast to the core and the recursive core, matching
plans that satisfy either’SS*, or the strict core, may not be Pareto optimal with respect to
players (not agents).

6.1. Other notions of credibility

The above concepts implicitly make different assumptions regarding the options that
are available to deviators following a deviation from a candidate stable plad, pie§ers
in a deviating coalition are prevented from further deviating with players outside of the
coalition. In &, players in a deviating coalition are allowed to interact with non-deviators
in periods subsequent to the deviation. The outcome of this interaction is, however, limited
to a return to the original plan.

In a static framework, two concepts which allow for more general deviations from de-
viations are Zhou's (1994argaining set and Klijn and Masso’s (2003) concept weak
stability. These concepts allow members of the deviating coalition to form a pact to de-
viate further with players not included in the coalition. These concepts do not, however,
require deviations from deviations to themselves be stable to yet further deviations. That
is, they do not impose self-sustainability. Self-sustainability is a requirement that all coali-
tions be treated uniformly. It is particularly important in a dynamic environment where
time-consistency is a natural minimal requirement for all coalitions—including deviations
from deviations—to be credible.

Also in a static framework, Chwe’s (1994) conceptfarfsighted coalitional stability
allows for arbitrary deviations from deviations and incorporates strategic behavior that is
similar to self-sustainability. In his concept, players may deviate in order to trigger a
series of further deviations from which they will ultimately benefit. Bhattacharya (2002)
proposes a modification of Chwe’s (1994) stability concept by introducing the credibility
requirement that only undominated deviations be considered. In a recent paper, Konishi
and Ray (2003) look more closely to the idea of sequences of coalitional deviations in a
dynamic model where coalitions form and break over time.

In this paper, we are interested in deviational credibility in a dynamic environment. Our
concepts focus on time-consistency and self-sustainability. Though time-consistent and
self-sustaining, one criticism of plans if & that deviations do not have to immune to
proposals to deviate with players from outside of the deviati6maBtially addresses this
criticism. It allows deviations to return to the original plan. If the original plan is “stable,”
returning to it is certainly a credibile threat that deviations have to consider.

S* does, however, rule out more general deviations from deviations. In non-cooperative
game theory, different beliefs held by players off the equilibrium path can support different
equilibrium behavior. Here, different beliefs about what further deviations are possible
would give rise to concepts of stability that are different frofn Burther, when assuming
that a deviating coalition may choose to return to the original plésis Silent on whether
agents who do not belong to the deviating group will consent. If, following the deviation,
these agents re-match among themselves, they might not be willing to return to the original
plan. These limitations notwithstanding, the simplicity 8£Sit is a simple modification of
the core of the agent-form—and the existence result, make it a starting point for addressing
the issue of stability in a dynamic environment. Developing a stability concept in a dynamic
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market that allows for time-consistency, self-sustainability, and a more general deviations
from deviations, remains a challenge.

7. Conclusion

This paper considers various notions of stability in dynamic matching markets. The
dynamic nature of the market introduces a number of issues that are not present in a sta-
tic model. First, time consistency is an important requirement if players cannot credibly
commit to a matching plan at the outset of the game. Second, what constitutes a credible
deviation can have important implications on the predictions of the model, even more so
than in a static market.

We showed how $may be a more appropriate stability concept than the recursive core
if credibility requires deviations to be self-sustaining. If, in addition, credible deviations
must be robust to proposals to rejoin the original plan, then the predictiorfsas&3$nore
relevant. Which concept is appropriate depends essentially on the amount of commitment
that is possible among the players.

The agent form representation of the dynamic game proved a powerful tool for investi-
gating these different credibility issues within a unified framework.
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