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Abstract. Recounting introduces multiple pivotal events in two-candidate

elections. In addition to determining which candidate is elected, an in-

dividual’s vote is pivotal when the vote margin is just at the levels that

would trigger a recount. In large elections, the motive to avoid recount

cost can become the dominant consideration for rational voters, inducing

them to vote informatively according to their private signals. In envi-

ronments where elections without recount fail to aggregate information

efficiently, a modified election rule with small recount cost can produce

asymptotically efficient outcomes with a vanishing small probability of

actually invoking a recount. In environments where efficient informa-

tion aggregation obtains in elections without recount, a modified election

rule with recount cost can increase the speed at which the information

efficient outcome is approximated.
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1. Introduction

More than two centuries ago Condorcet (1875) first articulated the idea that voting

groups with diverse information about their alternatives make a better choice the

larger the group size. This celebrated Condorcet jury theorem is a statistical propo-

sition based on an early application of the law of large numbers. It is an important

result that gives confidence to our belief that large elections can resolve conflicts due

to dispersed information and produce good collective decisions.

Although intuitively appealing, the presumed sincere-voting behavior by the

electorate has been re-examined by economists who study this topic. Austen-Smith

and Banks (1996) first point out how informative voting, that is voting according to

one’s own private signal, is generally inconsistent with rationality (see also Fedder-

sen and Pesendorfer, 1996). Since a non-pivotal vote does not affect the outcome

and is thus payoff-irrelevant, rational voting behavior requires conditioning one’s

vote on the information inferred from the vote being pivotal as well as on one’s own

private information. In a large election, the information inferred from being pivotal

can overwhelm one’s own private information. Thus, informative voting generally

fails in a large election except for a small fraction of informed voters.1

The failure of informative voting notwithstanding, Feddersen and Pesendor-

fer (1997) show that in a large two-candidate election the outcome is information-

efficient in the sense that almost surely it would remain the same even if all the

private information about the candidates became common knowledge. Under any

election rule, the outcome in a large election would be determined by the corre-

sponding decisive voter’s preference if the private information were perfectly ag-

gregated. For example, under the simple majority rule, the decisive voter has the

median preference in the electorate. Similarly, under strategic voting, votes are cast

as if the election is close and the decisive voter is indifferent between the two can-

didates. Even though the fraction of voters whose vote depends on their private

signals is small in a large election, their number goes to infinity. It is these vot-

ers that determine the election outcome, ensuring that the outcome is information

efficient.
1In a two-candidate election model with a continuous payoff state, Feddersen and Pesendorfer

(1997) show that the fraction of agents who vote informatively vanishes as the election size becomes

arbitrarily large.
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Nevertheless, there are environments in which information efficiency fails under

strategic voting even though it could obtain had all informed voters voted infor-

matively. One such environment involves “aggregate uncertainty,” where there are

partisan voters who randomly split their votes between the two candidates, result-

ing in uncertainty in realized vote shares even when the number of voters becomes

arbitrarily large (Feddersen and Pesendorfer, 1997). Another environment involves

conflicting preferences, where the same change in the public belief about a candi-

date can increase his appeal to some voters but lower his appeal to other voters

(Bhattacharya, 2013).

In this paper, we resurrect informative voting as an equilibrium strategy in large

two-candidate elections by introducing other pivotal events in addition to the stan-

dard one that determines the eventual winner. Although there are many ways to

introduce additional pivotal events, we adopt a model of costly recounting. An

election rule in this model is characterized by three thresholds of vote shares for

a given candidate and a positive recount cost. If the vote share for the candidate

exceeds the largest threshold then that candidate is declared an outright winner;

and symmetrically, if the vote share falls below the smallest threshold then the the

opposing candidate is declared an outright winner. If the vote share falls between

the smallest and the largest thresholds, a “recount” takes place after each voter in-

curs the recount cost. The candidate is declared the winner if the vote share upon

recount is above the middle threshold, and the opposing candidate wins otherwise.

We study information aggregation in an environment with finitely many states and

conditionally independent private signals. We explicitly model the presence of ag-

gregate uncertainty, while we leave the description of strategic voters preferences as

general as possible, to include the broadest set of environments including models

such as Bhattacharya 2013’s where preferences are non-monotone in the state. Ag-

gregate uncertainty is modeled by the presence of non-strategic uninformed voters

(who do not receive private signals); the fraction of uninformed voters voting for a

given candidate remains random even in large elections.

Our main result establishes that, whenever the efficient information aggregation

is possible, it is achieved, asymptotically, by a sequence of equilibria with recounting

and every agent vote informatively. In our model, corresponding to the middle

threshold is the standard pivotal event that votes for the two candidates are tied.

Costly recounting creates two additional pivotal events: corresponding to the largest
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threshold is the pivotal event when one more vote for the given candidate would

make him an outright winner and one more vote for the opponent would trigger

a costly recounting but would not change the winner, and corresponding to the

smallest threshold is the symmetric pivotal event. Although the probabilities of the

three pivotal events conditional on the state all vanish in the limit, one of them

becomes dominant because its conditional probability goes to zero at the slowest

rate. This is a consequence of the theory of large deviations, which studies the limit

behavior of rare events.2 In our equilibrium construction, the pivotal events where

a recounting can be triggered always dominate the third. At these pivotal events,

the desire to save the recounting cost is the only motive, thus voters incentives are

entirely aligned. They each vote for one candidate or the other depending on which

of the two pivotal events is more likely, as a function of their private signal.

Not only our election rule with recounting aggregate information efficiently when-

ever that is possible, which include environments where a standard election rule

would fail to do so. Furthermore, we show that the probability of recounting and

thus incurring the cost in equilibrium is negligible in large elections, thus the im-

provement in information aggregation is achieved at no cost.

Finally, we show that in environments where a standard election without re-

counting aggregates information efficiently, recounting still improves the outcome

by increasing the speed at which the information efficient outcome is approximated.

2. A Model of Elections with Recounting

We study an election with a large number n + 1 of voters to choose between two

candidates: R and L. Denote the share of votes for R as V. An “election rule”

consists of three thresholds vL, vC and vR, satisfying vL < vC < vR, and specifies:

1. candidate R is elected if V > vR;

2. candidate L is elected if V < vL;

3. a “recount” is triggered at an additive payoff loss of δ > 0 to each voter if

V ∈ [vL, vR]; and after the recount, candidate R is elected if V ≥ vC and

candidate L is elected otherwise.
2See, for example, Dembo and Zeitouni (1998) for a textbook treatment.
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Note that a standard election rule without recounting can be represented as a

special case of election rules defined above, with δ = 0. We assume that there is no

error in the initial vote count stage or in the the recount stage. Therefore the vote

share for R in the recount stage will be exactly the same as that recorded in the

initial count. We do not consider unanimity rules; both vR and vL are assumed to

be strictly between 0 and 1.

Voters are independently drawn from a large population of potential voters. A

fraction 1 − α ∈ (0, 1] of potential voters are informed voters; the rest are unin-

formed. There is a finite number, M, of payoff relevant states of the world S =
{s1, . . . , sM} ∈ 0, 1M. States are ordered with 0 ≤ s1 < ∙ ∙ ∙ < sM ≤ 1, and the voters’

common prior beliefs over S is described by the distribution μ = (μ1, . . . , μM), with

μi being the probability the state is si. Each informed voter observes a condition-

ally independent signal σ ∈ Σ = {σ1, . . . , σJ} informative of the realized state. The

signal’s conditional distributions β(∙|s), satisfy the property (MLRP)

Assumption 1.

β(σ|s)
β(σ′|s)

>
β(σ|s′)
β(σ′|s′)

for all σ > σ′ and s > s′. (1)

An immediate implication of property (1) is that the posterior distributions over

S after observing a signal realization, {μσ}σ∈Σ, are ordered with respect to first order

stochastic dominance, so that the higher the signal observed, the more an informed

agent revises his expectation about the realized state upward.

Uninformed voters are introduced to preserve uncertainty about the realized vote

share in each given state s in large elections. They are non-strategic; a fraction θ

of them vote for candidate R and the remaining fraction 1 − θ vote for L.3 The

fraction θ is a random variable distributed on [θ, θ] ⊆ [0, 1], with a continuous and

positive density function f and corresponding distribution function F. The aggregate

uncertainty state θ is independent of the payoff state s.

Informed voters are heterogeneous with respect to a preference type t ∈ T, and

the heterogeneity of preferences types among the population of potential informed

3The uninformed voters are partisan in the sense that they have preferences between the two

candidates that cannot be swayed by any evidence. Otherwise, they may optimally choose to abstain

from voting. See Feddersen and Pesendorfer (1996).
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voters is described by a probability measure P over T. The payoff to an informed

voter depends on the outcome of the election, the realized payoff relevant state and

her preference type t. A payoff function

π : {LR} × S × T BbbR,

describes the payoff, without a recount, to an informed voter as a function of the

candidate elected, the realized payoff relevant state, and the voter’s type. The voter’s

payoff is reduced by δ if the same election outcome is achieved after a recount. We

make the following joint assumption over the payoff function and preference types:

Assumption 2. The payoff difference function u(s, t) ≡ π(R, s, t) − π(L, s, t), and the

distribution of preference types P satisfy

P({t ∈ T |u(s, t) > 0}) > P({t ∈ T
∣
∣u(s′, t) > 0}) for all s > s′.

Under the above assumption, in a large election with only informed voters and

perfect information, the unique equilibrium outcome in un-dominated strategies

would be monotone in the state. That is, the assumption is a requirement that

the full-information outcome has a “threshold” structure, with the winner chang-

ing at most once as a function of the realized payoff relevant state. A sufficient

condition for Assumption 2 is the commonly used requirement (e.g. Federsen and

Pesendorfer (1997)) of “state-monotone preferences” that u is increasing in s. Mono-

tone preferences are not necessary and Assumption 2 is also satified, for example, in

Bhattacharya (2013)’s model where, for a majority of voters, u is increasing in s and

for a minority of voters the opposite is true.

2.1. Strategy and equilibrium

For a given n, we consider a voting game with n + 1 voters, Γn, described by: i)

the election rule {vL, vC , vR} and δ; ii) the payoff relevant states S, the preference

type space T and the payoff function u : S × T → R; and iii) the prior belief μ over

S, the probability measure P over T, the distribution function over the aggregate

uncertainty state F, as well as the set of signals Σ and the conditional probability

distributions over Σ, {β(∙|s)}s∈S. These are all common knowledge. Ultimately we

are interested voting games with large n, so we will ignore all integer problems. The

solution concept is Bayesian Nash equilibrium and we restrict attention to symmetric

equilibria.
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Fix some informed voter. Denote as v the number of votes for R from all voters

other than this voter, divided by the total number of votes n from these voters. Let

gn(∙|s) represent the probability distribution of v in state s. The function gn(∙|s) is

derived from the strategies adopted by all other voters. Since no voter observes the

identity of the other n voters, and the payoff state s is independent of the uncertainty

state θ, the function gn(∙|s) depends neither on the preference type t nor on the

private signal σ observed by the informed voter. Further, the presence of uninformed

voters guarantees that gn(∙|∙) is a strictly positive function.

Upon observing a private signal realization σ ∈ Σ, an informed voter’s private

belief that the state is s becomes

μσ(s) =
μ(s)β(σ|s)

μ(s)β(σ|s) + ∑s′ 6=s μ(s′)β(σ|s′)
.

There are three events in which his vote is pivotal:

1. v = vL: Regardless of the state, voting R instead of L triggers a recount,

incurring a cost of δ.

2. v = vC : Voting R instead of L tilts the election outcome (after the recount) to

R. In state s this changes the voter’s payoff by u(s, t).

3. v = vR: Regardless of the state, voting R instead of L determines the outcome

of the election immediately, saving the recount cost δ.

Therefore, upon observing a private signal σ, voting for R yields a larger expected

payoff than voting for L if

∑
s∈S

μσ(s) (gn(vR|s)δ + gn(vC |s)u(s, t) − gn(vL|s)δ) ≥ 0 (2)

A strategy profile must describe the probability the an informed voter casts a

vote in favor of R as a function of both her preference type t and the realization of

her private signal σ. Thus a strategy profile is a function

k : T × Σ → [0, 1].

Definition 1 (BNE). A Nash equilibrium of the Bayesian game Γn is a strategy profile kn
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such that, for all t ∈ T and σ ∈ Σ
(

∑
s∈S

μσ(s) (gn(vR|s; κn)δ + gn(vC |s; κn)u(s, t) − gn(vL|s; κn)δ)

)

kn(t, σ) ≥ 0 and

(

∑
s∈S

μσ(s) (gn(vR|s; κn)δ + gn(vC |s; κn)u(s, t) − gn(vL|s; κn)δ)

)

(1 − kn(t, σ)) ≤ 0.

The above definition simply states the mixed-strategy Nash equilibrium require-

ment that a strategic voter must cast with probability one a vote that yields a strictly

larger expected payoff, where expectations are taken with respect to the probability

distributions gn(∙|∙; kn) obtained from the primitive of the game and the equilibrium

strategy profile kn.

More structure on the preference types and payoff functions would yield addi-

tional properties of the equilibrium strategy profile. For example, when T is an

interval of the real line and u(s, t) strictly increasing in t, as in Federsen and Pe-

sendorfer (1997), an equilibrium strategy profile must have an ordered “threshold”

structure and can be described by a set of thresholds {kσ}σ∈Σ, with all types t > kσ

voting for R and all types t < kσ voting for L after observing a private signal σ.

In Bhattacharya (2013) the type space has two dimensions T = [0, 1] × {M, m}. The

utility function of the majority voters u(s, x, M) is increasing in x, while the utility

function of minority voters, u(s, x, m) is decreasing in x. In this case two sets of

thresholds, {kM
σ , km

σ }σ∈Σ, are sufficient to describe the equilibrium behavior of ma-

jority and minority voters respectively.

As for the two examples above, in most economic applications the type space

T, and its associated probability space, as well as the payoff function u(∙, ∙), will

naturally have additional structure. Our results do not depend on the properties of

T or u, so we only impose the minimal requirement (which is already implicit in

Assumption 2) that the function u(s, ∙) is T-measurable for each state s ∈ S. We also

restrict the strategy space to those functions k such that k(∙, σ) is T-measurable for

each σ, so that the integral of k(∙, σ) with respect to the probability measure P is well

defined. For convenience of notation we denote such integral as

H(σ; κ) ≡
∫

k(∙, σ)dP.
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Given a strategy profile k, the function H(∙; κ) describes the probability that a ran-

domly drawn informed voter casts a vote for R as a function of the private signal σ

she observes.

For any strategy profile κ, we are now ready to define with z(s, θ; κ) the proba-

bility that a randomly drawn voter casts a vote for candidate R in the payoff state s

and aggregate uncertainty state θ. This is given by

z(s, θ; κ) = (1 − α) ∑
σ∈Σ

H(σ; κ)β(σ|s) + αθ. (3)

We will refer to z(s, θ; κ) as the vote share for candidate R in state (s, θ) given the

strategy profile κ.

Given z(s, θ; κ), from the perspective of each individual informed voter, the prob-

ability of a vote share v for candidate R conditional on the payoff state s and the

aggregate uncertainty state θ is then given by

gn(v|s, θ; κ) =
( n

nv

)
z(s, θ; κ)nv(1 − z(s, θ; κ))n(1−v), (4)

and thus

gn(v|s; κ) =
∫ θ

θ
gn(v|s, θ; κ) f (θ) dθ. (5)

To avoid dealing with integer problems, when using the above expression of

gn(∙|s; κ) in Definition 1 to derive the explicit constraints for a strategy profile kn to

be a Bayesian Nash equilibrium of the game Γn, we implicitly assume that nvL, nvC
and nvR are integers. Given our focus on the limit case for n large, it is equivalent

to assuming that the voting rule thresholds are rational.

2.2. Ranking of pivotal events

Fix a strategy profile κ and the implied vote share functions z(s, θ; κn). In a large

election, the probability that the actual vote share equals a particular value v is

vanishingly small. A key observation of this paper is that the rates at which the

probabilities of different pivotal events go to zero are different, so that in the limit

some pivotal events are infinitely more likely to occur than others. Calculating the

rate of convergence is therefore an important part of the analysis of large elections

with multiple pivotal events.
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If voters knew the aggregate uncertainty state θ, then the probability that the vote

share equals v is given by the binomial probability gn(v|s, θ; κ) in equation (4). Using

Stirling’s approximation formula for the binomial coefficient, we have

gn(v|s, θ; κ) =
φn

v√
2πv(1 − v)n

I (v; z(S, θ; κ))n , (6)

where

I(v; z) =
( z

v

)v
(

1 − z
1 − v

)1−v

,

and limn→∞ φn
v = 1. The function − log I(v; z) is known as the “rate function” or

“entropy function” in the theory of large deviations. It determines the rate at which

the probability gn(v|s, θ; κ) goes to zero. In particular, if there are two events v and

v′ such that I(v; z(s, θ; κ)) > I(v′; z(s, θ; κ)), then

lim
n→∞

gn(v′|s, θ; κ)
gn(v|s, θ; k)

=
(

I(v′; z(s, θ; κ))
I(v; z(s, θ; κ))

)n

= 0.

In our model an informed voter does not know the aggregate uncertainty state

θ. The probability that she assigns to a certain pivotal event v to occur in the payoff

relevant state s, gn(v|s; k) is the integral of gn(v|s, θ; k) over all possible aggregate

uncertainty states. The following lemma shows that in determining the rate of con-

vergence, only the θ which maximizes the function I(v; z(s, θ; κ)) matters.

Lemma 1. Let θ(v, s) ≡ arg maxθ∈[θ,θ] I(v; z(s, θ; κ)). For any v, v′ and any two payoff

relevant states s, s′,

lim
n→∞

gn(v|s; κ)
gn(v′|s′; κ)

=
f (θ(v, s))

f (θ(v′, s′))
lim

n→∞

gn(v|s, θ(v, s); κ)
gn(v′|s′, θ(v′, s′); κ)

.

Proof. The function I(v; z) is increasing in z for z < v and decreasing in z for

z > v, attaining a maximum at z = v. Since z(s, θ; κn) is strictly increasing in θ,

I(v; z(s, θ; κn) is decreasing in θ for θ < θ(v, s) and increasing in θ for θ > θ(v, s).

Let Bε(v, s) ⊂ [θ, θ] be a small interval of width ε that contains θ(v, s). Specifically,

if θ(v, s) = θ, choose Bε(v, s) = [θ, b) where b = θ + ε; and if θ(v, s) = θ, choose

Bε(v, s) = (b, θ] where b = θ − ε. If θ(v, s) is interior, choose Bε(v, s) = (b, b) such

that b − b = ε and I(v; z(s, b; κn)) = I(v; z(s, b; κn)). Denote Bc
ε(v, s) = [θ, θ]\Bε(v, s)
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to be the complement of Bε(v, s). Note that I(v; z(s, θ; κn)) > I(v; z(s, θ′; κn)) for any

θ ∈ Bε(v, s) and θ′ ∈ Bc
ε(v, s).

For any pivotal event v and any state s, we have
∫

Bc
ε(v,S)

gn(v|s, θ) f (θ) dθ < gn(v|s, θ′n) Pr[θ ∈ Bc
ε(v, s)],

where θ′n is equal to b or b.

Continuity of gn(v|s, ∙) also implies that there is a unique θ̂n ∈ Bε(v, s) such that
∫

Bε(v,S)
gn(v|s, θ) f (θ) dθ = gn(v|s, θ̂n) Pr[θ ∈ Bε(v, s)].

We further claim that limn→∞ θ̂n = θ(v, s). To see this, note that by definition

lim
n→∞

∫

Bε(v,s)

gn(v|s, θ)

gn(v|s, θ̂n)
f (θ) dθ = Pr[θ ∈ Bε(v, s)],

which is only possible if θ̂n converges to θ(v, s) because from the fact that θ(v, s)
maximizes I(v; z(s, θ; κn)), we must have limn→∞ gn(v|s, θ)/gn(v|s, θ(v, s)) = 0 for

all θ 6= θ(v, S).

From the two conditions above, we obtain that for any ε positive,

lim
n→∞

∫
Bc

ε(v,S) gn(v|s, θ) f (θ) dθ
∫

Bε(v,S) gn(v|s, θ) f (θ) dθ
≤ lim

n→∞

gn(v|s, θ′n) Pr[θ ∈ Bc
ε(v, s)])

gn(v|s, θ̂n) Pr[θ ∈ Bε(v, s)]
= 0, (7)

where the equality follows because limn→∞ gn(v|s, θ′)/gn(v|s, θ) = 0 whenever θ′ ∈
Bc

ε(v, s) and θ ∈ Bε(v, s), and because θ̂n is bounded away from θ′n.

For any v, v′ and s, s′,

lim
n→∞

gn(v|s)
gn(v′|s′)

= lim
n→∞

∫ θ
θ gn(v|s, θ) f (θ) dθ
∫ θ

θ gn(v′|s′, θ) f (θ) dθ
= lim

n→∞

∫
Bε(v,S) gn(v|s, θ) f (θ) dθ

∫
Bε(v′,S′) gn(v′|s′, θ) f (θ) dθ

,

where the last equality follows from (7). The above holds for any ε positive and thus

lim
n→∞

gn(v|s)
gn(v′|s′)

= lim
ε→0

lim
n→∞

∫
Bε(v,s) gn(v|s, θ) f (θ) dθ

∫
Bε(v′,s′) gn(v′|s′, θ) f (θ) dθ

.

Reversing the limit order and calculating the inner limit using l’Hopital’s rule, we

obtain:

lim
n→∞

gn(v|s)
gn(v′|s)

= lim
n→∞

gn(v|s, θ(v, s)) f (θ(v, s))
gn(v′|s, θ(v′, s′)) f (θ(v′, s′))

.
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Lemma 1 implies that given a sequence of strategy profiles {kn}n=1,2,..., for any

pair of pivotal events v, v′ and any pair of payoff states s, s′, the ratio gn(v|s; κn)/gn(v′|s′; κn)
can have a limit different from zero or infinity only if

lim
n→∞

I (v; z(s, θ(v, s); κn)) = lim
n→∞

I
(
v′; z(s′, θ(v′, s′); κn)

)
. (8)

We refer to the above property as the “equal-rate condition.” Furthermore, since

I(v; z) is increasing in z for z < v and decreasing in z for z > v, and since z(s, θ; κ) is

increasing in θ, we have

θ(v, s) = arg min
θ∈[θ,θ]

|z(s, θ; κ) − v| .

For example, when z(s, θ; κ) < v ≤ v′ < z(s′, θ; κ), then θ(v, s) = θ and θ(v′, s′) = θ.

In this case, the ratio gn(v|s; kn)/gn(v′|s′; kn) can have a limit different from zero or

infinity only if I(v; z(s, θ; κn)) − I(v′; z(s′, θ; κn)) converges to zero.

The following definition is a useful comparison of the rates at which two pivotal

events vanish in a given payoff relevant state.

Definition 2. Given a sequence of strategy profiles {κn}, a pivotal event v dominates

another pivotal event v′ in state s, if

lim
n→∞

gn(v′|s; kn)
gn(v|s; kn)

= 0

From Lemma 1, I(v; z(s, θ(v, s); κn))− I (v′; z(s, θ(v′, s); κn) > ε > 0 for all n suffi-

ciently large suffices for v to dominate v′ in state s.

3. Information efficient equilibria

The central question of the paper is whether recounting can help achieve the same

outcome as in an election with just informed voters and common knowledge of

the payoff relevant state. In such an election and without recounting (i.e. δ = 0),

by Assumption 1 there is some s∗ ∈ {1, . . . , M + 1} such that candidate R would

receive a share larger that vC of informed votes for all payoff relevant states s ≥ s∗,

and would fail to do so, leading to candidate L being elected, for s < s∗. We further

assume that 2 ≤ s∗ ≤ M, so that the full information outcome is not common

knowledge, and efficiently aggregating the voters information is necessary to achieve
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it.4 The full information outcome selects, in each state s, candidate R if a vC-majority

of voter favors it in state s, and L otherwise.5 The following definition of “full

information equivalence,” adapted from Feddersen and Pesendorfer (1997), reflects

the presence of aggregate uncertainty in our model, and requires that the election

outcome is not affected by the aggregate uncertainty state realization.

Definition 3. A sequence of strategy profiles achieves “full information equivalence” if for

all ε > 0, there is an N such that for n > N and for any realization of the uncertainty state,

candidate L is chosen with probability greater than 1 − ε when the payoff relevant state is

s < s∗, and candidate R is chosen with probability greater than 1 − ε if s ≥ s∗.

In the presence of aggregate uncertainty, full information equivalence might not

be possible. While the aggregate information available to informed voters would

always be sufficient to identify the payoff relevant state in a large election, the noise

introduced in the voting outcome by the behavior of uninformed voters (modeled as

the aggregate uncertainty state), might be large enough that no sequence of strategy

profiles ever satisfy the conditions in Definition 3. The following definition describes

a necessary and sufficient condition for full information equivalence to be possible.

Its failure implies that no electoral rule can ever yield the outcome preferred by the

vC-majority of informed voter for every payoff relevant state.

Definition 4. For a given electoral rule, full information equivalence is “achievable" if there

exists a strategy profile k such that

z(s, θ; k) < vC < z(s′, θ; k) for all s < s∗ and s′ ≥ s∗. (9)

The share of uninformed votes for R is largest in the aggregate uncertainty state

θ and smallest in the aggregate uncertainty state θ. Full information equivalence

requires that voting by informed voters generates a sufficiently large spread of R’s

vote share between “high states” (i.e. s ≥ s∗) and “low states" (i.e. s < s∗), so that

the election outcome is determined by informed voters only and not the aggregate

4The first part of the Proposition 1 remains valid for s∗ ∈ {1, M + 1}, but the equilibrium con-

struction does not satisfy (11).
5When preferences are monotone in the preference type as well as in the state, as in Feddersen

and Pesendorfer (1997), this coincide with the outcome preferred by the vC -median voter.
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uncertainty state. Note the (9) can only be satisfied if a non negligible measure of

types vote “informatively” i.e. change their vote as their private signal varies. Fi-

nally, it is worth remarking that whether full information equivalence is achievable

depends jointly on the outcome-determining threshold vC together with the infor-

mativeness of the agents signals and the distribution of aggregate uncertainty. It

does not depend, however, on whether the election has recounting (i.e. δ > 0), or

the values of the recounting thresholds vL adn vR.

Next we introduce a class of strategy profiles that are “monotone in signals,”

and we show that whether a monotone strategy profile can distinguish between the

threshold state s∗ and its immediately preceding states s∗− is a sufficient test for the

achievability of full information equivalence.

Definition 5. A strategy profile k is “monotone” if, for all t ∈ T,

k(t, σ) > 0 ⇒ k(t, σ′) = 1 for all σ′ > σ; and

k(t, σ) < 1 ⇒ k(t, σ′) = 0 for all σ′ < σ.

Given a monotone strategy profile, each type randomizes its vote for at most one

signal realization and the probability of casting a vote for R is non-decreasing in

the signal realization. The following lemma provides the intuitive result that full

information equivalence is achievable if and only if it is achievable in monotone

strategies.

Lemma 2. For any electoral rule, full information equivalence is achievable if and only if

there exists a monotone strategy profile k such that

z(s∗−, θ; k) < vC < z(s∗, θ; k). (10)

Proof. The fact that (10) is sufficient is immediate after noting that, by Assumption 1,

z(s, θ, k) is increasing in the payoff relevant state for every monotone strategy profile

k. The only if part of the statement follows because any strategy profile k satisfying

(9) can be changed into a monotone strategy satisfying the same properties by the

following transformation. For each t, let k̃(t, ∙) be the monotone strategy such that

∑
σ∈Σ

β(σ|s∗)k̃(t, σ) = ∑
σ∈Σ

β(σ|s∗)k(t, σ).

By construction, z(s∗, θ, k̃) = z(s∗, θ, k). By Assumption 1, z(s∗−, θ, k̃) ≤ z(s∗−, θ, k).
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For monotone strategies, Assumption 1 implies that candidate R’s vote share,

z(s, θ; k), is an increasing function of the state. This observation, together with

Lemma 1, immediately imply the following result, which will be critical in our equi-

librium construction.

Lemma 3. Let {kn} be a sequence of monotone strategy profiles such that

z(s∗−, θ, kn) < vL < vR < z(s∗, θ, kn) for all n sufficiently large. (11)

Then, the pivotal event vL dominates vC and vR for all s ≤ s∗−, and the pivotal event vR
dominates vC and vL for all s ≥ s∗.

Note that a sequence of strategy profiles satisfying the condition in Lemma 3

would also achieve full information equivalence. The opposite is not true in general,

but any sequence of monotone strategy profiles that satisfies (9) would also satisfy

the conditions of Lemma 3 if the recounting thresholds vL and vR are close to vC .

Our main result will show that, whenever full information equivalence is achiev-

able, in an election with recounting there is a sequence of equilibrium strategy pro-

files that does so for all vL and vR sufficiently close to vC . The equilibrium construc-

tion will also satisfy (11). This implies that not only full information equivalence

obtains, but also a costly recounting is never triggered in the limit, thus the election

with recounting achieves the first best efficient outcome in the limit.

Proposition 1. Suppose full information equivalence is achievable for an electoral rule. If

δ > 0 and vL, vR are sufficiently close to vC , there exists a sequence of monotone strategy

profiles {kn} that achieves full information efficiency, and such that kn is an equilibrium of

the game Γn for each n. Further, (11) holds.

Proof. Since full information efficiency is achievable, by a construction similar to

that in the proof of Lemma 2, there is a type independent monotone strategy pro-

file, k, such that z(s∗−, θ; k) < vC < z(s∗, θ; k). Thus (11) also holds for any vL ∈
(z(s∗−, θ; k), vC) and vR ∈ (vC , z(s∗, ,θ; k)).

A type independent and monotone strategy can be described by a single variable

ψ ∈ [0, J]. The unique strategy profile associated to ψ is given by

k(t, σj) =






0 if j ≤ ψ

1 if j ≥ ψ + 1

j − ψ otherwise
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and any type independent monotone strategy profile can be described by a single

variable ψ. The integer part of ψ describes the highest signal for which all types vote

for L, the decimal part of ψ describes the probability of voting for L when observing

the next signal, and for all higher signals all types vote for R. Note that z(s, θ; ψ)
is continuous and strictly decreasing in ψ. Thus, there are values ψ < ψ such that

z(s∗−, θ, ψ) = vL and z(s∗, θ, ψ) = vR.

The following lemma establishes that, in any sufficiently large election, the best

response of any type to a strategy profile that satisfies (11) is a monotone strategy.

Best responses are “almost type-independent” meaning that there is a unique signal

realization such that the best responses of any two types may differ.

Lemma 4. Let k be a strategy profile such that (11) is satisfied and σ′ > σ. For all n

sufficiently large, and for all t, t′ ∈ T,

∑
s∈S

μσ(s) (gn(vR|s; k)δ + gn(vC |s; k)u(s, t) − gn(vL|s; k)δ) ≥ 0 ⇒

∑
s∈S

μσ′
(s)
(

gn(vR|s; k)δ + gn(vC |s; k)u(s, t′) − gn(vL|s; k)δ
)

> 0.

Proof. Rewrite the first inequality as

∑
s≥s∗

μσ(s)
(

gn(vR|s; k)
gn(vR|s∗; k)

δ +
gn(vC |s; k)

gn(vR|s∗; k)
u(s, t) −

gn(vL|s; k)
gn(vR|s∗; k)

δ

)

gn(vR|s
∗; k) ≥

∑
s<s∗

μσ(s)
(

−
gn(vR|s; k)

gn(vR|s∗−; k)
δ −

gn(vC |s; k)
gn(vR|s∗−; k)

u(s, t) +
gn(vL|s; k)

gn(vR|s∗−; k)
δ

)

gn(vL|s
∗
−; k).

For n large, by Lemma 3 the left-hand-side becomes arbitrarily close to μσ(s∗)gn(vR|s∗; k)δ

and the right-hand-side arbitrarily close to μσ(s∗−)gn(vR|s∗−; k)δ. The claim follows

from observing that μσ(s∗)
μσ(s∗−) is strictly increasing in σ by (1).

An equilibrium strategy profile that satisfies (11) must be monotone and “almost

type independent”, meaning that how types vote can differ for at most one signal re-

alization. Consider one such strategy, k, and let σj be the signal realization for which

the strategy is type dependent. The probability that a randomly drawn informed

voter with a private signal σj would vote for R is

∫

T
k(t, σj)dP(t).
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Now consider the type independent strategy profile Ψ(k) = j −
∫

T k(t, σj)dP(t). The

strategy profiles k and Ψ(k) are identical for every signal realization σ < σj (every

type votes for L) and σ > σj (every type votes for R). They might differ for the

realization σj, however the probability that a randomly drawn type with signal σj

votes for R is the same for the two profiles. By construction, k and Ψ(k) generate

the same distribution of vote shares for R, that is

gn(v|s; k) = gn(v|s; Ψ(k)) for all vote shares v and s ∈ S.

Since, k and Ψ(k) generates the same distribution of vote shares, the set of best

responses to k and to Ψ(k) coincide. The following result, which is an immediate

implication of this observation, will allow us to construct a fixed point mapping

from which we can establish the existence of an equilibrium that satisy (11).

Lemma 5. Let ψ be a type independent monotone strategy profile that satisfies (11). For n

sufficiently large, if k is a best response to ψ and further Ψ(k) = ψ, then k is an equilibrium

of Γn.

Finally we construct a correspondence B, from the space of type independent

monotone strategies, [0, J] into itself as follows:

B(ψ) =






J i f ψ < ψ

{Ψ(k) s.t k ∈ BR(ψ)} i f ψ ∈ [ψ, ψ]

0 i f ψ > ψ

Since gn(v|s; ψ) is a continuous function of ψ for all pivotal events and states, for

n large enough, for each type the best response correspondence is u.h.c. in ψ and

monotone in signal for all ψ ∈ [ψ, ψ]. Thus, B(∙) is u.h.c. for ψ ∈ [ψ, ψ]. Further,

since
gn(vL|s∗−;ψ)
gn(vR|s∗;ψ) and gn(vR|s∗;ψ)

gn(vL|s∗−;ψ)
go to zero for n large, every type’s best response to

ψ is to vote for R regardless of the signal and the best response to ψ is to vote for

L regardless of the signal. Thus B(ψ) = J and B(ψ) = 0, and B is u.h.c. on [0, J].
The fact the B has a fixed point is an application of Kakutani’s fixed point theorem.

Let ψ∗ be a fixed point of B(∙). Then there exists a best response to ψ∗, k∗ such that

Ψ(k∗) = ψ∗. By Lemma 5, k∗ is an equilibrium of Γn.

Since our equilibrium construction satisfies (11), the pivotal events vL dominates

for s < s∗, and vR dominates for s ≥ s∗. Further, it must also be the case that
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gn(vL|s∗−;kn)
gn(vR|s∗;kn) neither goes to 0 nor to ∞, along the sequence of equilibrium strategy

profiles. Otherwise, eventually it becomes a unique best response for all types to

vote for the same candidate regardless of the signal observed, which is not a fixed

point of B(∙). This implies that along any sequence of equilibrium strategy profiles

that satisfies (11)

lim
n→∞

I(vR, z(s∗, θ; kn)) = lim
n→∞

I(vL, z(s∗−, θ; kn)). (12)

Note that since for any monotone and type independent profile ψ, the vote share

function z(v, z(s, θ; ψ)) is strictly decreasing in ψ, the “equal I” condition (12) is

satisfied by a unique ψI ∈ [ψ, ψ]. This means that, while the existence result of

Proposition 1 does not exclude that there might be multiple equilibria for each game

Γn, all equilibrium strategy profiles generate, in the limit, the same distribution over

vote shares. A result that we formally state in the next proposition.

Proposition 2. Let {kn} be a sequence of strategy profile satisfying (11) and such that kn is

an equilibrium of Γn for each n. Then,

lim
n→∞

Ψ(kn) = ψI .

Our main result of Proposition 1 establishes that recounting can improve the in-

formation efficiency of the electoral outcome whenever full information efficiency is

achievable yet, without recounting, there is no sequence of equilibria that achieves

it. It is possible to construct examples where this happens. When full informa-

tion equivalence obtains in the limit of equilibria without recounting, adding the

recounting thresholds can still improve on the equilibrium outcome. Our final result

shows that recounting improves the “informativeness” of the equilibrium strategy

profile. That is, recounting generates a larger spread of the expected vote share for

R across the two critical states s∗ and s∗−. This property, which explains why, with

recounting, full information equivalence is more robust to aggregate uncertainty,

also implies that the information efficient outcome will be approximated at a faster

rate by a small modification of the electoral rule. This result is obtained, in the fol-

lowing proposition, by comparing a sequence of equilibria of a game Γn
δ , where it is

assumed that the recounting cost is δ > 0, with a sequence of equilibria of a game

Γn
0 which differs from Γn

δ only by the absence of recounting cost (i.e. δ = 0).

The key property explaining this result is that, in the equilibrium construction

of Proposition 1, at the dominant pivotal events a vote does not change the iden-

tity of the winner, thus the incentives to vote are type independent. This allows to
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construct an equilibrium where all type vote informatively (i.e. their vote changes

across signals). Without recounting, at the only pivotal event, vC , the vote deter-

mines the election outcome. Thus a voter’s belief over payoff relevant states and her

preference type matter for her voting decision, and if an individual’s private signal

does not change significantly her beliefs conditional on the pivotal event being re-

alized, her vote must be uninformative. Under the following assumption, there is

always a positive mass of types who vote un-informatively in an equilibrium without

recounting.

Assumption 3. For any probability distribution μ over S, there is a subset of types T ′ ⊆ T,

such that P(T′) > 0 and for all t ∈ T′

(

∑
s∈S

μσ(s)u(s, t)

)(

∑
s∈S

μσ′
(s)u(s, t)

)

> 0 for all σ, σ′ ∈ Σ.

If μ is the posterior belief conditional on the pivotal event vC in an equilibrium

without recounting, all types in T′ vote un-informatively in equilibrium as their ex-

pected payoff difference between voting R and voting L does not change sign with

the voter’s private information. Assumption 3 is both a requirement that prefer-

ences vary enough with types, and that private signals are not too informative. It

is satisfied in several strategic voting models such as, for example, Feddersen and

Pesendorfer (1997) and Bhattacharya (2013).

Proposition 3. Let {kn} and {kFP
n } be two sequences of monotone strategy profiles such

that: i) both achieve full information equivalence; ii) the sequence {kn} satisfies (11); and iii)

kn is an equilibrium of Γn
δ and kFP

n is an equilibrium of Γn
0 for all n. Then, for all vR and vL

sufficiently close to vC

lim
n→∞

z(s∗−, θ; kn) ≤ lim
n→∞

z(s∗−, θ; kFP
n ) < lim

n→∞
z(s∗, θ; kFP

n ) ≤ lim
n→∞

z(s∗, θ; kn), (13)

with all strict inequalities if Assumption 3 holds.

Proof. With recounting, in the limit the equilibrium must satisfy the “equal I” condi-

tion that

lim
n→∞

I(vL, z(s∗−, θ; kn)) = lim
n→∞

I(vR, z(s∗, θ; kn)).
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Similarly, the limit equilibrium with recounting must satisfy an analogous “equal I”

condition

lim
n→∞

I(vC , z(s∗−, θ; kFP
n )) = lim

n→∞
I(vC , z(s∗, θ; kFP

n )).

Otherwise, either the ratio gn(vC |s;kFP
n )

gn(vC |s∗;kFP
n )

goes to 0 for all s 6= s∗, or the ratio gn(vC |s;kFP
n )

gn(vC |s∗−;kFP
n )

goes to 0 for all s 6= s∗−. In either case, every type’s best response to kFP
n is inde-

pendent of his signal, as conditional on the realization of the pivotal event the state

is known, which contradicts the hypothesis that the {kFP
n } achieves full information

equivalence.

For all recounting thresholds sufficiently close to vC , if z(s∗−, θ; kFP
n ) < z(s∗−, θ; kn),

the two “equal I” conditions can be satisfied only if z(s∗, θ; kFP
n ) > z(s∗, θ; kn). To

prove the claim is than sufficient to show that z(s∗−, θ; kFP
n ) ≤ z(s∗−, θ; kn) always im-

plies z(s∗, θ; kFP
n ) ≤ z(s∗, θ; kn) and it implies z(s∗, θ; kFP

n ) < z(s∗, θ; kn) if Assumption

3 holds. To see this, first notice that given the strategy profile kFP
n we can costruct a

type independent strategy profile ψ̂ such that z(s∗−, θ; kFP
n ) = z(s∗−, θ; ψ̂). By (1), we

have z(s∗, θ; kFP
n ) ≤ z(s∗, θ; ψ̂). The first claim follows from observing that: i) from

the equilibrium construction in Proposition 1, there is a type independent strategy

profile Ψ(kn) such that z(s, θ; kn) = z(s, θ; Ψ(kn)) for all s, θ; and ii) the vote share

function z(s, θ; ψ) is increasing in ψ.

The second part of the claim is obtained by constructing a strategy profile k̃

such that: i) k̃(σ, t) = kFP
n (σ, t) for all types that vote un-informatively in kFP

n ; ii)

k̃(σ, t) = k̃(σ, t′) for all types t, t′ that vote informatively in kFP
n ; and iii) z(s∗−, θ; kFP

n ) =
z(s∗−, θ; k̃). By (1), it is still the case that z(s∗, θ; kFP

n ) ≤ z(s∗, θ; k̃). However, since

there is a positive mass of types who vote un-informatively and the others use a

type independent strategy,

z(s∗−, θ; k̃) ≤ z(s∗−, θ; Ψ(kn)) ⇒ z(s∗, θ; k̃) < z(s∗, θ; Ψ(kn)),

which establishes the second part of the claim.

Proposition 3 establishes that the probability of a “mistake,” meaning an election

outcome different from the full information outcome, is smaller in both states s∗−
and in state s∗, when the electoral rules mandates a costly recounting exercise for

sufficiently tight election. Since the probability of mistakenly electing R is larger in

state s∗− than in any other smaller state, and the probability of mistakenly electing
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L is larger in state s∗ than any other higher state, the rate of convergence to the

full information outcome only depends on the probability of a mistake in the two

threshold states s∗− and s∗. Thus, as an implication of Proposition 3, whenever an

electoral rule without recounting achieves full in information equivalence, adding

recounting is still beneficial by providing a faster rate of convergence to the same

informationally efficient outcome.

Finally, Proposition 3 provides sufficient conditions for recounting to improve the

rate of convergence to the informationally efficient outcome, and recounting may

still be beneficial when some or all of the assumptions are violated. For example,

the requirement that the equilibrium without recounting be in monotone strategies

can be weakened. The result still holds if the equilibrium strategies are monotone

“on average.” That is, if the average probability (across type) of voting for R is

increasing in the signal observed. The result also holds when equilibrium strategies

are “thresholds.” That is, for every type there is at most one signal that induce

randomization over votes. This is the case, for example, in Bhattacharya (2013)’s

model.

4. Discussion

4.1. Two rounds of voting

Suppose the election rule is that candidate R is the outright winner if his vote share

in the first round of voting is greater than vR, and candidate L is the outright winner

if his vote share is greater than 1− vL. When neither candidate is an outright winner,

there will be a second round of voting with a standard election rule vC after imposing

a second-round voting cost δ to each voter. We claim that under this alternative

specification of the election rule {vL, vC , vR}, the equilibrium construction for our

model of election with recounting can be replicated as an equilibrium in a model

with two rounds of voting.

The equilibrium construction in such a model with two voting rounds poses some

additional complications. First, there is a continuum of pivotal events because any

realized first-round vote share for R between vL and vR might in principle lead

to a different continuation equilibrium. However, if the first round strategy profile

satisfies the full information equivalence condition (11), then it follows from Lemma

1 that for n sufficiently large the only probabilistically relevant pivotal events in the
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first round are that v = vL in state s∗− and that v = vR in state s∗. All other pivotal

events are dominated by one of these two events. A second complication in replicat-

ing our equilibrium construction arises because, at the two relevant pivotal events,

the vote of an informed voter will change the timing of the election resolution—as

in the recounting model—but might also change the election outcome. However, if

the first round strategy profile satisfies (11), for n large the belief that the state is s∗

is arbitrarily close to 1 at the pivotal event vR and the belief that the state is s∗− is

arbitrarily close to 1 at the pivotal event vL. As long as in the continuation equi-

librium the probability that R is elected approaches 1 (respectively, 0) when every

informed voter’s belief that the state is R is close to 1 (respectively, 0) then at the

pivotal events vL and vR the vote affects the election outcome (i.e., which candidate

wins) with a vanishing probability. In other words, the dominant consideration in

the first round of voting is to avoid the cost δ incurred in a second round of voting,

and our equilibrium construction for the recount model is replicated in a model with

two rounds of voting.

4.2. Recount cost

Our model of election with recount does not depend on the magnitude of the recount

cost δ. We only assume that δ is positive and fixed as n goes to infinity. This

restriction can be further relaxed by assuming that a recount costs a fixed amount

of Δ > 0 and that in an election with n + 1 voters, each voter bears a cost of δn =
Δ/(n + 1).

When z(s∗, θ; κn) > vR, Lemma 1 and monotone strategies implies that gn(v|s;kn)
gn(vR|s∗;kn)

goes to 0 as n goes to infinity for v = vL, vC and every s ≥ s∗. Similarly, gn(v|s;kn)
gn(vL|s∗−;kn)

goes to 0 as n goes to infinity for v = vR, vC and every s ≤ s∗−. Moreover, these ratios

go to 0 at an exponential rate because the rate functions of the different pivotal

events are ranked. From the proof of Proposition 1, the voting incentives of an agent

observing a signal realization σ are now described by the inequality

∑
s≥s∗

μσ(s)
(

gn(vR|s; k)
gn(vR|s∗; k)

δn +
gn(vC |s; k)

gn(vR|s∗; k)
u(s, t) −

gn(vL|s; k)
gn(vR|s∗; k)

δn
)

gn(vR|s
∗; k) ≥

∑
s<s∗

μσ(s)
(

−
gn(vR|s; k)

gn(vR|s∗−; k)
δn −

gn(vC |s; k)
gn(vR|s∗−; k)

u(s, t) +
gn(vL|s; k)

gn(vR|s∗−; k)
δn
)

gn(vL|s
∗
−; k).

For n large, by Lemma 3 the left-hand-side still becomes arbitrarily close to μσ(s∗)gn(vR|s∗; k)δn

and the right-hand-side arbitrarily close to μσ(s∗−)gn(vR|s∗−; k)δn. This is because,
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even though the recount cost δn goes to 0 as n goes to infinity, it goes to 0 only at

the rate 1/n. The remainder of the proofs of Propositions 1 goes through with no

change.

4.3. Counting errors

Our model does not allow for counting errors, so that the vote count in the initial

stage is identical to the vote count in the recount stage. There are different ways to

introduce counting errors. We consider two alternatives.

In the first version of a model with counting error, we assume that each vote for

candidate R has an independent probability ζ < 1/2 of being miscounted as a vote

for candidate L, and likewise each vote for L has an independent probability ζ of

being miscounted as a vote for R. Further assume that if there is a recount, all the

counting errors are corrected. Under these assumptions, if the true vote share for

candidate R is v, the initial vote count for R will be

ve = (1 − ζ)v + ζ(1 − v).

Note that ve > v if and only if v < 1/2, which is due to regression to the mean.

Define

v′L ≡
vL − ζ

1 − 2ζ
, v′R ≡

vR − ζ

1 − 2ζ
.

Then, under the election rule {vL, vC , vR}, the election would go into the recount

stage if the true vote share v for R is between v′L and v′R.

With recounting errors, whether full information efficiency is achievable now

dependens on the specifics of the electoral rule as well as the probability of mis-

counting. Precisely, there must exist a strategy profile, k, such that

z(s, θ; k) < min{v′R, vC} ≤ max{v′L, vC} < z(s, θ; k) for all s < s∗ and s′ ≥ s∗ (14)

The conditions (4) and (14) coincide whenever

v′L < vC < v′R. (15)

Unless vC = 1/2, in which case (15) holds for any pair of (vL, vR), it can be the case

that (15) is violated. In fact, it will always be violated for vL, vR sufficiently close to

vc 6= 1/2.
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To replicate the equilibrium construction of Proposition 1 condition (15) is neces-

sary. Further, we need to be able to find a strategy profiles k such that

z(s, θ; k) < v′L < v′R < z(s, θ; k) for all s < s∗ and s′ ≥ s∗. (16)

In the proof of Proposition 1, the requirement (16) is satisfied by taking vL and vR
sufficiently close to vC . In the presence of recounting errors this is not possible, as

too tight recounting thresholds might lead to inefficiencies. However, for any pair

(vL, vR), if the recounting error, ζ, is sufficiently small (15) holds. Further, for all

pairs (vL, vR) sufficiently close to vC , for sufficiently small recounting errors if a

strategy profile satisfies (9), it also satisfies (16). Thus, the equilibrium construction

of Proposition 1 can be replicated provided the recounting error is small enough.

We can summarize this discussion in the following statement

Proposition 4. Suppose full information equivalence is achievable for an electoral rule. If

δ > 0, for all vL, vR sufficiently close to vC there is a ζ(vL, vR) > 0 such that, for

all miscounting probabilities ζ < ζ(vL, vR), there exists a sequence of monotone strategy

profiles {kn} that achieves full information efficiency, and such that kn is an equilibrium of

the game Γn for each n.

Our second model of counting errors assumes system-wide errors instead of

independent mistakes in counting each ballot. For example, such correlated errors

may occur when a certain counting protocol (how to deal with hanging chads, etc.)

is not properly followed, so that all the votes in the same polling station or even the

entire election are miscounted is a specific way. To model these errors, we assume

that if the true vote share for candidate R is v, then upon the initial count the vote

share is recorded as

ve =






1 if v+u>1;

0 if v+u<0;

v+u otherwise.

In the above, u is a random variable with positive and continuous density on the

support [u, u]. Upon recounting, all errors are detected so that the election outcome

is based on the true vote share v. The effect of the systematic counting error u is

very similar to the effect of aggregate uncertainty θ, except that u only influences

the initial vote share but not the final tally. Specifically, if z(s, θ; κn) + u > vR, then

in state s the pivotal event ve = vR dominates the other pivotal events v = vC and
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ve = vL for sufficiently large n. Proposition 1 continues to hold if there exists a

strategy profile, k, such that

z(s∗−, θ; k) + u < vC < z(s∗, θ; k) + u. (17)

While (17) is stronger than the requirement that full information efficiency is achiev-

able, it is implied by the latter whenever the distribution of the systemwide error is

sufficiently concentrated (i.e. u − u is sufficiently small). Thus, similarly to the first

model of counting errors, the result of Proposition 1 is robust to the introduction of

small recounting errors. However, it is also worth noting that (17) is not necessary

for full information efficiency to be achievable in the presence of recounting errors,

which only requires that the counting error is not so large to induce the wrong

election outcome without recounting, or

z(s∗−, θ; k) + u < vR and vL < z(s∗, θ; k) + u.

4.4. Uncertain size of electorate

The analysis presented here can be generalized to the case with an uncertain elec-

torate size if we assume that the number of voters is N, with N being a Poisson

random variable with mean n. Myerson (1998; 2000) develops the tools to study

such Poisson games.

Recall that from Stirling’s approximation to the binomial probability in equation

(6), the rate at which the pivotal probability that the vote share equals v goes to 0 is

given by:

lim
n→∞

log gn(v|s, θ; kn)
n

= log I(v; z(s, θ; κn)).

In contrast, Myerson (2000) shows that in a Poisson model, the corresponding rate

is:

lim
n→∞

log gn(v|s, θ; kn)
n

= I(v; z(s, θ; κn)) − 1.

Since log I and I − 1 are positive transformation of one another, given any v, s and

κn, the θ that maximizes log I in the model with no population uncertainty also

maximizes I − 1 in the Poisson model. Lemma 1 then implies that if z(s∗, θ; κn) > vR,

then the event v = vR dominates the events v = vC and v = vL in every state s ≥ s∗.

Likewise, if z(s∗−, θ; κn) < vL, then the event v = vL dominates the events v = vC
and v = vR in al states s ≤ s∗−. All the results in the current paper remains intact in

the Poisson model.
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5. Concluding Remarks

This paper is an outgrowth of our earlier papers (Damiano, Li and Suen, 2010; 2013)

that use costly delay to improve information aggregation in a two-agent negotiation

problem, and to study the design of deadline in negotiations. Here, we introduce

multiple pivotal events to resurrect informative voting in large elections. The key to

our equilibrium construction relies on the fact that while the probabilities of different

pivotal events are all vanishingly small in large elections, the rate at which they go to

zero can be ranked. Since the desire to avoid recount cost is preference-independent,

and since pivotal events triggering a recount dominate the pivotal event involving a

tie between the candidates, we demonstrate how informative voting by all types can

be an equilibrium in large elections with recount, producing asymptotically infor-

mation efficient outcomes which may otherwise be infeasible in standard elections.

The analysis of elections with multiple pivotal events also features in Razin (2003) in

the context of signaling policy preference by voters, and in Bouton and Castanheira

(2012) and Ahn and Oliveros (2012) in models of multi-candidate and multi-issue

voting.

In this paper we have considered the Condorcet jury theorem in large elections.

In a jury setting, Austin-Smith and Banks (1996) and Feddersen and Pesendorfer

(1998) have shown that the Condorcet jury theorem fails due to strategic voting. In

particular, Feddersen and Pesendorfer (1998) show that a unanimous conviction rule

in jury decisions may lead to higher probability of false conviction as well as false

acquittal than the simple majority rule, and the probability of convicting an innocent

defendant may increase with the size of the jury. More relevant to the present paper

is a recent literature that asks whether the Condorcet jury theorem continues to hold

when acquiring information is costly to individual agents. Mukhopadhaya (2005)

shows that in a symmetric mixed strategy equilibrium, as the number of commit-

tee members increases, each member chooses to collect information with a smaller

probability. He finds examples in which, using the majority rule, a larger committee

makes the correct decision with a lower probability than does a smaller one. Ko-

riyama and Szentes (2009) consider a model in which agents choose whether or not

to acquire information in the first stage, and then the decision is made according to

an ex post efficient rule in the second stage. They show that there is a maximum

group size such that in smaller groups each member will choose to collect evidence,

and the Condorcet jury theorem fails for larger groups. However, in a model with
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the quality of information as a continuous choice variable, Martinelli (2006) shows

that if the marginal cost of information is near zero for nearly irrelevant information,

then there will be effective information aggregation despite the fact that each indi-

vidual voter will choose to be very poorly informed. In a recent paper, Krishna and

Morgan (2012) show that when participation in an election is costly but voluntary,

those who choose to participate will vote informatively even in a standard election.

However the fraction of participating voters is vanishingly small in a large election,

rendering asymptotic information efficiency difficult to achieve if there is aggregate

uncertainty in the model.
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