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Abstract. We consider a committee problem in which efficient information ag-
gregation is hindered by differences in preferences. Sufficiently large delays
could foster information aggregation but would require commitment. In a
dynamic delay mechanism with limited commitment, successive rounds of
decision-making are punctuated by delays that are uniformly bounded from
above. Any optimal sequence of delays is finite, inducing in equilibrium both
a “deadline play,” in which a period of no activity before the deadline is fol-
lowed by full concession at the end to reach the efficient decision, and “stop-
and-start” in the beginning, in which the maximum concession feasible alter-
nates with no concession. Stop-and-start results from simultaneously maxi-
mizing both the “static” incentives for truth-telling – by maximizing the im-
mediate delay penalty – and the “dynamic” incentives – by minimizing con-
tinuation payoffs.
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1. Introduction

The committee problem is a prime example of strategic information aggregation. The
committee decision is public, affecting the payoff of each committee member; the in-
formation for the decision is dispersed in the committee and is private to committee
members; and committee members have conflicting interests in some states and com-
mon interests in others.1 As a mechanism design problem, the committee problem has
the following distinguishing features. First, there are no side transfers, unlike in Myerson
and Satterthwaite (1983). Second, each committee member possesses private informa-
tion about the state, in contrast with the strategic information communication problem of
Holmstrom (1984). Third, the number of committee members is small, unlike the large
election problem studied by Feddersen and Pesendorfer (1997).

It is well-known in the mechanism design literature that a universally bad outcome
or a sufficiently large penalty can be useful toward implementing desirable social choice
rules when agents have complete information about one another’s preferences (Moore
and Repullo 1990; Dutta and Sen 1991). In the absence of side transfers in a committee
problem, costly delay naturally emerges as a tool to provide incentives to elicit private
information from committee members. In an earlier paper (Damiano, Li and Suen 2012),
we show how introducing delay in committee decision-making can result in efficient in-
formation aggregation and ex ante welfare gain among committee members. In that pa-
per, the cost incurred with each additional round of delay is fixed and is assumed to be
small relative to the value of the decision at stake. If we drop the assumption of small
delay, even the first best may be achievable: under the threat of collective punishment,
committee members would reach the Pareto efficient decision immediately with no de-
lay incurred on the equilibrium path. However, achieving the first best requires delay to
be sufficiently costly. This poses at least two problems for mechanism design. First, the
mechanism is not robust in that a “mistake” made by one member will produce a bad out-
come for all. More importantly, because imposing a lengthy delay is very costly ex post,
the mechanism is not credible unless there is strong commitment power. This paper takes
a limited commitment approach to mechanism design in committee problems.2 Specifi-
cally we assume that the mechanism designer can commit to imposing a delay penalty
and not renegotiating it away immediately upon a disagreement, but there is an upper
bound on the amount of delay that he can commit to impose. That is, he can commit to

1See Li, Rosen and Suen (2001) for an example and Li and Suen (2009) for a literature review.
2See Bester and Strausz (2001), Skreta (2006), and Kolotilin, Li and Li (2013) for other models of limited

commitment.
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“wasting” a small amount of value (or time) ex post, but not too much. The upper bound
on the delay reflects the extent of his limited commitment power. In our model, a suf-
ficiently tight bound on delay would imply that the efficient decision cannot be reached
immediately, and that delay will occur in equilibrium. This gives rise to dynamic delay
mechanisms in which committee members can make the collective decision in a num-
ber of rounds, punctuated by a sequence of delays between successive rounds, and with
each delay uniformly bounded from above depending on the commitment power. When
delays will be incurred in equilibrium, there is a dynamic trade-off between imposing a
greater collective punishment through delay and raising the probability of making the
collectively desirable decision. This framework allows us to ask questions that cannot
be addressed in our previous paper: Does punishment (delay) work better if it is front-
loaded or back-loaded? Is it optimal to maintain a constant sequence of delays between
successive rounds? Do deadlines for agreements arise endogenously as an optimal ar-
rangement? These questions are the subject of the present paper.

The model we adopt in this paper is a slightly simplified version of Damiano, Li and
Suen (2012). In this symmetric, two-member committee problem, there are two alterna-
tives to be chosen, with the two committee members favoring a different alternative ex
ante. One can think of this as a situation in which each member derives some private
benefit if his ex ante favorite alternative is adopted. The payoffs from the two alterna-
tives also depend on the state. If it is known that the state is a “common interest state,”
both members would choose the same alternative despite their ex ante preferences. If it
is known that the state is a “conflict state,” the two members would prefer to choose their
own ex ante favorites. Therefore, the prior probability of the conflict state is an indicator
of the degree of conflict in the committee. Information about the state, however, is dis-
persed among the two members. Each member cannot be sure about the state based on his
private information alone, but they could jointly deduce the true state if they truthfully
share their private information. This model is meant to capture the difficulties of reaching
a mutually preferred collective decision when preference-driven disagreement (difference
in ex ante favorites) is confounded with information-driven disagreement (difference in
private information). Damiano, Li and Suen (2012) provide examples including compet-
ing firms choosing to adopt a common industry standard, faculty members in different
specialties recruiting job candidates, and separated spouses deciding on child custody.
For tractability, Damiano, Li and Suen (2012) adopts a model in which members choose
their actions in continuous time. In this paper, since the focus is the optimal sequencing
of delays, members move in discrete “rounds,” with potentially variable delays between
successive rounds.
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We have deliberately chosen a simple model to capture the feature that, in the absence
of side transfers, there is no incentive compatible mechanism that Pareto-dominates flip-
ping a coin if the degree of conflict in the committee is sufficiently high. This is a stark
illustration of the difficulties of efficient information aggregation because the members
would have agreed to make the same choice (in the common interest state) had they been
able to share their information. Introducing a collective punishment in the form of de-
lay if the members disagree may improve decision-making, and indeed, committing to
a sufficiently long and thus costly delay would achieve the first-best outcome of Pareto
efficient decision—implement the agreed alternative in each common interest state and
flip a coin in the conflict state—without actually incurring the delay.

This paper focuses on situations in which the first best is unachievable because there
is a limit to how much time members can commit to wasting when both committee mem-
bers persist with their own favorite alternatives. The members can attempt to reach an
agreement repeatedly in possibly an infinite number of rounds, but the length of de-
lay between successive rounds cannot exceed a fixed upper bound. In this framework,
any given sequence of delays is a mechanism that induces a dynamic game between the
members, and we examine the “optimal” sequence that maximizes the members’ ex ante
payoffs subject to the uniform bound on the length of each delay.

The dynamic game induced by a delay mechanism resembles a war of attrition with
incomplete information and interdependent values.3 In equilibrium of this game, an in-
formed member (who knows that the state is a common interest state for his alternative)
always persists with his own favorite. An uninformed member (who is unsure whether
it is a conflict state or a common interest state for his opponent’s alternative) may ran-
domize between persisting with his favorite and conceding to his opponent’s favorite.
Because of the structure of this equilibrium strategy profile, an uninformed member’s
belief that his opponent is also uninformed (i.e., the state is a conflict state) weakly de-
creases in the next round when both members are observed to be persisting with their
favored alternatives in the current round. Given any fixed delay mechanism, finding the
equilibrium of the dynamic game involves jointly solving the sequence of actions chosen
by the uninformed, the sequence of beliefs, and the sequence of continuation payoffs. For
an arbitrary sequence of delays, such an approach is not manageable and does not yield
any particular insights. In this paper, we introduce a “localized variation method” to
study the design of an optimal delay mechanism. Consider changing the delay at some

3See also Hendricks, Weiss and Wilson (1988), Cramton (1992), Abreu and Gul (2000), and Deneckere
and Liang (2006).
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round t. We study its effect by simultaneously adjusting the delay in round t− 1 (through
the introduction an extra round if necessary) in such a way that keeps the continuation
payoff for round t− 2 fixed, and adjusting the delay in round t + 1 (also through the in-
troduction of an extra round if necessary) in such a way that keeps the equilibrium belief
in round t + 2 constant. In this manner the effects of these variations are confined to a
narrow window, so that there is no need to compute the entire sequence of equilibrium
actions, equilibrium beliefs, and continuation payoffs. It turns out that just by employing
this localized variation method, we can arrive at an essentially complete characterization
of optimal delay mechanisms.

The main result of this paper is a characterization of all delay mechanisms that have
a symmetric perfect Bayesian equilibrium with the maximum ex ante expected payoff
to each member. Such “optimal” delay mechanisms have interesting properties that we
highlight in Section 3 and establish separately in Section 4. First, we show that any op-
timal delay mechanism is a finite sequence of delays. Thus, it is optimal to have a final
round, or “deadline,” for making the decision; failing to make the decision in the final
round would entail that the decision is made by flipping a coin after incurring the fi-
nal delay. In an optimal delay mechanism, however, an informed committee member
always persists with his favorite alternative while an uninformed member concedes to
the favorite alternative of his fellow member with probability 1 in the final round if it is
reached. The decision is thus always Pareto efficient in equilibrium. Second, we show
that in equilibrium of an optimal delay mechanism there is a “deadline play,” in which
each member persists with his own favorite alternative for a number of rounds before
the deadline. This means that it is optimal to have the committee make no attempt at
reaching a decision just before the deadline arrives. Third, we show that an optimal delay
mechanism induces a “stop-and-start” pattern of making concessions. At the first round,
each uninformed member starts by adopting a mixed strategy with the maximum feasible
probability of conceding to the favorite alternative of his fellow member. If the committee
fails to reach an agreement, the uninformed types would make no concession in the next
round or next few rounds. After one or more rounds of no concession, the uninformed
types start making the maximum feasible concession again, and would stop making any
concession for one or more rounds upon failure to reach an agreement. Thus equilibrium
play under the optimal delay mechanism alternates between maximum concession and
no concession, until the deadline play kicks in.4 To achieve this “stop-and-start” pattern

4A round of no concession following each round of maximal concession may be interpreted as tempo-
rary “cooling off” in a negotiation process. For negotiation practitioners, such cooling off is often seen as
necessary to keep disruptive emotions in check and avoid break-downs, and sometimes as a useful negotia-
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of equilibrium play, the length of delay between successive rounds cannot be constant
throughout. Before the deadline play is reached, the delay is equal to the limited commit-
ment bound in rounds when members are making concessions, and is strictly lower than
the bound in rounds when they are not making concessions.

As the uniform upper bound on delay goes to zero, optimal delay mechanisms char-
acterized in the present paper converge to the optimal deadline in the continuous-delay
model of Damiano, Li and Suen (2012). This convergence is derived in Section 5. There
we also briefly discuss two robustness issues regarding our main results. The first robust-
ness issue concerns the implicit assumptions on the payoff structure made in the commit-
tee problem introduced in Section 2.1. In particular, we have assumed that the common
benefit of implementing the correct alternative in a common interest state is equal to the
private benefit of implementing one’s ex ante favorite alternative in the conflict state. We
show that our characterization of optimal delay mechanisms remains qualitatively valid
for general payoff structures. The second robustness issue has to do with an assumption
made on the delay mechanisms introduced in Section 2.2. Specifically, we assume that in
each round a particular direct revelation mechanism is played: any agreement leads to
the implementation of the agreed alternative without delay, and a disagreement caused
by the two members conceding to each other’s favorite alternative leads to a coin flip
without delay. When more general dynamic delay mechanisms are allowed in which a
delay up to the same limited commitment bound can be imposed after the two members
concede to each other, we show how to improve the ex ante welfare of the committee
over the optimal mechanism characterized in Section 3. In spite of the improvements,
however, the design problem of the optimal general delay mechanism remains qualita-
tively similar, but a complete characterization is beyond the scope of this paper.

2. Model

2.1. A simple committee problem

Two players, called LEFT and RIGHT, have to make a joint choice between two alterna-
tives, l and r. There are three possible states of the world: L, M, and R. We assume that
the prior probability of state L and state R is the same. The relevant payoffs for the two
players are summarized in the following table.

In each cell of this table, the first entry is the payoff to LEFT and the second is the

tion tactic (see, for example, Adler, Rosen and Silverstein, 1998) . Our characterization of the stop-and-start
feature of optimal delay mechanism provides an alternative explanation.
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L M R

l (1, 1) (1, 1− 2λ) (1− 2λ, 1− 2λ)
r (1− 2λ, 1− 2λ) (1− 2λ, 1) (1, 1)

payoff to RIGHT. We normalize the payoff from making the preferred decision to 1 and
let the payoff from making the less preferred decision be 1− 2λ. The parameter λ > 0 is
the loss from making the wrong decision relative to a fair coin flip. In state L both players
prefer l to r, and in state R both prefer r to l. The two players’ preferences are different
when the state is M: LEFT prefers l while RIGHT prefers r. We refer to l as the ex ante
favorite alternative for LEFT, and r as the ex ante favorite alternative for RIGHT. In this
model there are elements of both common interest (states L and R) and conflict (state M)
between these two players.

The information structure is such that LEFT is able to distinguish whether the state is L
or not, while RIGHT is able to distinguish whether the state is R or not. Such information
is private and unverifiable. When LEFT knows that the state is L, or when RIGHT knows
that the state is R, we say they are “informed;” otherwise, we say they are “uninformed.”
Thus, an informed LEFT always plays against an uninformed RIGHT (in state L), and an
informed RIGHT always plays against an uninformed LEFT (in state R). Two uninformed
players playing against each other can only occur in state M. Without information aggre-
gation, however, an uninformed LEFT does not know whether the state is M or R. Let
γ1 < 1 denote his initial belief that the state is M.5 We note that γ1 can be interpreted
as the ex ante degree of conflict. When γ1 is high, an uninformed player perceives that
his opponent is likely to have different preferences regarding the correct decision to be
chosen.

In the absence of side transfers, if γ1 ≤ 1/2, the following simultaneous voting game
implements the Pareto efficient outcome. Imagine that each player votes l or r, with
the agreed alternative implemented immediately and any disagreement leading to an
immediate coin flip between l and r and a payoff of 1− λ to each player. It is a dominant
strategy for an informed player to vote for his ex ante favorite alternative. Given this,
because γ1 ≤ 1/2, it is optimal for an uninformed player to do the opposite. This follows
because, regardless of the probability x1 that the opposing uninformed player votes for
his own favorite, the payoff from voting the opponent’s favorite is higher than the payoff

5An uninformed RIGHT shares the same belief. The implied common prior beliefs are: the state is M
with probability γ1/(2− γ1), and is L or R each with probability (1− γ1)/(2− γ1).
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from voting one’s own favorite:

γ1 (x1(1− 2λ) + (1− x1)(1− λ)) + 1− γ1 ≥ γ1 (x1(1− λ) + (1− x1)) + (1− γ1)(1− λ).

The equilibrium outcome is Pareto efficient: the informed player gets the highest payoff
of 1, and the uninformed player also gets 1 when the state is the common interest state in
favor of his opponent or otherwise gets 1− λ from a coin flip in the conflict state.

In contrast, if γ1 > 1/2, the unique equilibrium in the above voting game has both
the informed and the uninformed types voting for their favorite alternatives. As a result,
the decision is always made by a coin flip in equilibrium, despite the presence of a mutu-
ally preferred alternative in a common interest state. In fact, using a standard application
of the revelation principle one can show that a mechanism without transfers is incentive
compatible if and only if the probability of implementing each alternative is independent
of the true state.6 Thus, in the absence of side transfers, there is no incentive compatible
mechanism that Pareto dominates flipping a coin when γ1 > 1/2. Thus, our model pro-
vides a stark environment that illustrates the severe restrictions on efficient information
aggregation in committees when side transfers are not allowed.

2.2. Delay mechanisms

As suggested in our previous work (Damiano, Li and Suen 2012), delay in making de-
cisions can improve information aggregation and ex ante welfare in the absence of side
transfers. We model delay by an additive payoff loss to the players, and denote it as
δ1 ≥ 0. Properly employed by a mechanism designer, delay helps improve information
aggregation by “punishing” the uninformed player when he acts like the informed. Sup-
pose we modify the voting game in Section 2.1 by adding delay: when both players vote
for their favorite alternatives, a delay δ1 is imposed on the players before the decision is
made by flipping a coin. It is straightforward to show that this modified game, which we
refer to as a one-round delay mechanism, achieves the first-best outcome of Pareto efficient
decision without the players having to incur delay. More precisely, for any γ1 > 1/2 and
δ1 ≥ λ(2γ1− 1)/(1− γ1), the unique equilibrium in the modified voting game is that the

6To see this, let qR, qM, and qL denote the probabilities of implementing alternative r when the true
states are R, M, and L, respectively, and let Q be the probability of implementing r when the reports are
inconsistent, that is, when both players report that they are informed. The incentive constraints for an
informed RIGHT and an informed LEFT, together imply qR ≥ qM and qM ≥ qL. The incentive constraint
for an uninformed RIGHT, together with the incentive constraint for an uninformed LEFT, imply that (1−
γ)(Q− qL) ≥ γ(qR − qM) and (1− γ)(qR −Q) ≥ γ(qM − qL). Thus, incentive compatibility requires that
(1− γ)(qR − qL) ≥ γ(qR − qL). This is inconsistent with γ > 1/2 unless qR − qL = 0, and so qR = qM = qL
in any incentive compatible outcome.
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informed votes for his favorite alternative while the uninformed votes for his opponent’s
favorite alternative.

Using delay to improve information aggregation in committees is both natural and, as
a mechanism, simple to implement. However, as a form of collective punishment, such
“delay mechanism” requires commitment. Furthermore, if the degree of conflict becomes
larger, that is, if γ1 becomes greater, the amount of delay required to achieve first best
increases without bound. In this paper, we assume that there is “limited commitment” in
the sense that the amount of delay δ1 is bounded from above by some exogenous positive
parameter ∆. Throughout the paper, we assume that

0 < ∆ < λ. (1)

This is admittedly a crude way of modeling the constraint on commitment power, but it
captures the essential idea that the destruction of value on and off the equilibrium path
is unlikely to be credible unless the amount involved is small relative to the decision at
stake.

Of course, whether the bound ∆ is binding or not depends on the initial degree of
conflict γ1. Throughout the paper, we assume that ∆ < λ(2γ1 − 1)/(1− γ1), so that the
first-best outcome cannot be achieved through a delay mechanism with δ1 ≤ ∆. Equiva-
lently, this assumption can be written as:

γ1 > γ∗ ≡
λ + ∆

2λ + ∆
. (2)

Note that γ∗ > 1/2. Under Assumption (2), using delay to achieve the “second best”
leads to a trade-off because a greater δ1 makes the uninformed player more willing to
vote for his opponent’s favorite alternative but it increases the payoff loss whenever delay
occurs.

It is straightforward to show that the optimal mechanism that maximizes the agents’
ex-ante welfare is given by δ1 = ∆ if the initial degree of conflict γ1 is low and otherwise
δ1 = 0. A larger cost reduces the equilibrium probability that the uninformed votes for
his favorite alternative. The welfare gains from such reduction more than compensate the
increased delay penalty in the case of a disagreement, and the net benefits are positive for
both the uninformed and the informed. As a result, whenever it is possible and desirable
to induce the uninformed to “concede” with positive probability, i.e. x1 < 1, it is opti-
mal to set δ1 equal to the upper bound to induce the lowest possible x1. Indeed, when
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the initial belief γ1 is close to γ∗, the one-round delay mechanism with δ1 = ∆ imple-
ments an equilibrium outcome that approximates the first best. As γ1 increases, however,
the uninformed player votes for his favorite alternative with a greater probability, which
leads to a greater payoff loss due to delay. At some γ1, the benefit of inducing the unin-
formed player to vote for the opponent’s favorite alternative some of the time is exactly
offset by the payoff loss due to delay. For higher values of γ1, the best a one-round delay
mechanism can do is to set δ1 = 0, which is of course the same as flipping a coin.

If the binding constraint in using delay to help aggregate information is the maximum
delay that can be imposed when the two players attempt to reach an agreement, can they
do better by committing ex ante to repeated delay when they disagree? Imagine that we
modify the original one-round mechanism by replacing the coin flip outcome after delay
with a continuation one-round mechanism with some delay δ2 ≤ ∆. Suppose that in this
two-round delay mechanism we can choose δ2 such that the uninformed player obtains a
continuation payoff in the second round exactly equal to the coin-flip payoff of 1− λ, but
through equilibrium randomization with probability x2 < 1 of voting for his ex ante fa-
vorite. Then, it remains an equilibrium for the uninformed player to vote for his favorite
alternative in the first round with the same probability x1 as in the original one-round
mechanism. As both x1 and the continuation payoff 1− λ remain unchanged in the mod-
ified mechanism, the equilibrium payoff to the uninformed player is the same as in the
one-round mechanism. However, because a smaller x2 benefits the informed player more
than it benefits the uninformed player, whenever the uninformed is indifferent between
a continuation round with x2 < 1 and δ2 > 0 and a coin flip with x2 = 1 and δ2 = 0,
the informed is strictly better off with the former than with the latter. Thus, this two-
round mechanism delivers the same payoff to the uninformed player as in the original
one-round mechanism but improves the payoff of the informed player.

That a two-round mechanism can improve over a one-round mechanism raises the
question about what a general dynamic delay mechanism can achieve. We formally de-
fine a general dynamic delay mechanism as an extensive form game below. In the defini-
tion we denote as p the action profile in which each player votes for his favorite alternative
(persist) in a given round, and with pt the sequence of p’s for round 1 through t. Further,
let c be the action profile in a given round in which each player votes against his favorite
alternative (concede), l (respectively, r) the action profile where LEFT (respectively, RIGHT)
persists and RIGHT (respectively, LEFT) concedes, and at any action profile in round t.
In the definition below, we assume there is a final round T. Later on in section 4.5 we
remove this assumption and show that an optimal delay mechanism is necessarily finite.
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Definition 1. A sequence (δ1, . . . , δT), with each δt ∈ [0, ∆], defines a delay mechanism as the
following extensive form game with imperfect information.

1. The players are LEFT and RIGHT.

2. The terminal histories are all sequences (S, pt−1, at), such that: i) S ∈ {L, M, R}; ii) t ≤ T;
and iii) at 6= p whenever t < T.

3. The player function assigns the empty history to “chance” and every other proper subhistory
to {LEFT, RIGHT}.

4. Chance chooses L, M or R with probability (1 − γ1)/(2 − γ1), γ1/(2 − γ1) and (1 −
γ1)/(2− γ1) respectively.

5. For each t ≤ T, the information partition of LEFT is {(L, pt−1)}, {(M, pt−1), (R, pt−1)},
and the information partition of RIGHT is {(R, pt−1)}, {(M, pt−1), (L, pt−1)}.

6. Given a terminal history (S, pt−1, at) the payoffs are as follows. If S = L and at = l or
S = R and at = r, the payoff is 1− ∑s≤t−1 δs to both players. If at = c, the payoff is
1− λ−∑s≤t−1 δs to both players. If at = p, the payoff is 1− λ−∑s≤t δs to both players.
For all other cases, if at = l (at = r) the payoff to LEFT (RIGHT) is 1−∑s≤t−1 δs and the
payoff to RIGHT (LEFT) is 1− 2λ−∑s≤t−1 δs.

A delay mechanism is a simple multi-round voting game where in each round t ≤ T,
conditional on the game having not ended, each player chooses between voting for his
favorite alternative and voting against it. If the two votes agree, the agreed alternative is
implemented immediately and the game ends. If both players vote for their opponent’s
favorite alternative (we call this a reverse disagreement), the decision is made by a coin flip
without delay. If both vote for their own favorite (regular disagreement), the delay δt is
imposed; the game moves on to the next round if t < T, or ends with a coin flip if t = T.

Given the initial degree of conflict γ1 and the upper-bound on delay ∆, we say that a
delay mechanism, together with a symmetric perfect Bayesian equilibrium in the extensive-
form game defined by the mechanism, is optimal if there is no delay mechanism with a
symmetric perfect Bayesian equilibrium that gives a strictly higher ex ante payoff to each
player. This definition of optimality allows for multiple symmetric perfect Bayesian equi-
libria in a given delay mechanism.7

7The main restriction we impose is symmetry. Generally there are asymmetric equilibria in which only
one informed type concedes with a positive probability. Our approach is to impose symmetry and establish
(in Section 4.5) that both informed types persist with probability 1 in any equilibrium. This is a more natural
approach given the underlying committee problem set up in Section 2.1.
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3. Results

For any γ1 ∈ (γ∗, 1), denote as r∗(γ1), or simply r∗, the smallest integer r satisfying(
λ + ∆

λ

)r
≥ 1− γ∗

1− γ1
. (3)

Define the “residue” η such that

η

(
λ + ∆

λ

)r∗−1

=
1− γ∗
1− γ1

. (4)

By definition, η ∈ (1, (λ + ∆)/λ], and (3) holds as an equality if η is equal to the upper
bound.

Main Result. There exists γ and γ, with γ∗ < γ < γ < 1, such that

(a) for γ1 ≤ γ, an optimal delay mechanism is:

δ1 = ∆, with T = 1;

(b) for γ1 ∈ (γ, γ) such that r∗(γ1) = 1, which always exists, an optimal delay mechanism is:

δ1 = ∆, δ2 = . . . = δτ+1 = (γ1λ− (1− γ1)∆)/τ,

δ2+τ = ∆, with T = 2 + τ,

where τ is the smallest integer greater than or equal to γ1(λ + ∆)/∆− 1;

(c) for γ1 ∈ (γ, γ) such that r∗(γ1) ≥ 2, which exists if and only if ∆ < (
√

2− 1)λ, an
optimal delay mechanism is:

δ2t−1 = ∆, δ2t = λ∆/(λ + ∆), for t = 1, 2, . . . , r∗ − 2,

δ2(r∗−1)−1 = ∆, δ2(r∗−1) = λ(η − 1)/η,

δ2r∗−1 = λ(η − 1), δ2r∗ = δ2r∗+1 = . . . = δ2r∗+τ−1 = γ∗λ/τ,

δ2r∗+τ = ∆, with T = 2r∗ + τ;

where τ is the smallest integer greater than or equal to γ∗λ/∆;

(d) for γ1 ≥ γ, an optimal delay mechanism is:

δ1 = 0, with T = 1.
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The above characterization establishes that a dynamic delay mechanism is optimal so
long as the initial degree of conflict γ1 is intermediate, that is, between γ and γ. Other-
wise, either a one-round delay mechanism with maximum delay ∆ is optimal when γ1

is close to γ∗ (case (a) of Main Result), or a coin flip without delay when γ1 is close to 1
(case (d) of Main Result). When optimal delay mechanisms are dynamic (i.e, cases (b) and
(c) of Main Result), they induce intuitive properties of equilibrium play which highlight
the logic of using delays dynamically to facilitate strategic information aggregation under
limited commitment.

The most interesting features of optimal delay mechanisms are:

(i) Any optimal delay mechanism is finite with a deadline T.
(ii) Any optimal dynamic delay mechanism induces deadline play with the efficient dead-

line belief in equilibrium: there is t with 2 ≤ t ≤ T − 1 such that the uninformed
player persists with probability 1 in rounds t, . . . , T − 1, and his belief γT entering
the last round is less than or equal to γ∗, so that the Pareto efficient decision is made
at the deadline.

(iii) Any optimal dynamic delay mechanism induces stop-and-start in equilibrium: for
any two adjacent rounds before the deadline play, the uninformed player persists
with probability 1 in one of them and randomizes in the other, starting with ran-
domization in the first round.

Property (i) implies that in any equilibrium induced by an optimal mechanism the to-
tal delay is bounded from above. Intuitively, it follows from the optimality of the delay
mechanism that there is a bound on the total delay such that an uninformed player con-
cedes with probability 1 before it is incurred. However, this argument relies on the claim
that an informed player persists with probability 1 regardless of the history of the play.
We establish this claim and property (i) simultaneously in Section 4.5. Not surprisingly,
the intuition behind the claim is that an informed player has a stronger incentive to per-
sist with his favorite alternative than an uninformed player does. We relegate the proof
of this property to the end of the analysis section (Section 4) because it does not rely on
the localized variation method we use to characterize the next two properties of optimal
delay mechanisms. Until then, we will focus on finite delay mechanisms with a deadline
round T.

Property (ii) implies that an optimal delay mechanism generally induces a “stalling
tactic” adopted by the uninformed types before the deadline, during which no attempt
is made to reach a decision, until they make a “last minute concession” to take the op-
ponent’s favorite alternative when the deadline arrives. These two tactics are not con-
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tradictory, because the expectation of a high payoff from last minute concession at the
deadline causes the uninformed types to stop any concession prior to the deadline. After
explaining our methodology and presenting some preliminary results in Section 4.1, we
show in Section 4.2 that any optimal delay mechanism induces a deadline belief γT of the
uninformed player that is less than or equal to γ∗. Intuitively dynamic delay mechanisms
work by driving down the uninformed player’ belief that the state is a conflict state. In-
ducing a deadline belief greater than γ∗ would imply that the uninformed player does
not concede with probability 1 in the last round. As a result the Pareto efficient decision
could not be achieved at the end, which cannot be optimal because adding more rounds
for the uninformed player to have an opportunity to concede would improve the payoff
of the informed. But driving down the uninformed player’s belief through delay is costly.
It does not pay to induce a deadline belief too much below γ∗. When r∗(γ1) ≥ 2 (i.e.,
in case (c)), we show that the deadline belief γT must be exactly equal to γ∗. A lower
deadline belief would imply that the uninformed player would concede in the last round
even if in the last round the limited commitment bound is slack, and so the delays before
the deadline can be reduced while still guaranteeing the Pareto efficient decision at the
end.

Property (iii) refers to case (c) of the Main Result and is perhaps the most interesting in-
sight of this paper. This property will be established in Section 4.3 below. It turns out that
in general inducing the uninformed player to concede with a positive probability in two
successive rounds is not optimal. In a delay mechanism, there are two ways to reduce the
probability that the uninformed persists in a given round, by increasing the immediate
delay and by decreasing the equilibrium continuation payoff after a disagreement. The
first are “static” incentives, while the latter are “dynamic” ones only available in multi-
round mechanisms. The logic behind the stop-and-start property is that maximizing the
dynamic incentives requires the uninformed to persist for sure in the next round. This
provides the greatest punishment in the event of a regular disagreement that induces the
uninformed player to concede more in the current round. In an optimal dynamic mecha-
nism, an “active round” of voting (in which the uninformed type concedes with positive
probability) is always followed by an “inactive round” (in which the uninformed type
concedes with zero probability). We show that this alternating pattern of start-and-stop
drives the belief from γ1 to γ∗ in the smallest possible number of steps. Furthermore, the
Main Result states that an optimal mechanism cannot have a delay equal to the upper
bound in every round. The optimal delays should alternate between the limited commit-
ment bound (to induce an “active round”) and a level strictly below the bound (to induce
an “inactive round”).

13



4. Analysis

4.1. Preliminary results

In this subsection, we present two preliminary results that are the essential ingredients in
our local-variation approach to characterizing the optimal delay mechanism. Both results
restrict to equilibria in which the informed player persists after any history, and the first
one in addition restricts to finite delay mechanisms. In Section 4.5, the restrictions are
shown to be without loss of generality.

Denote xt as the equilibrium probability that the uninformed player persists in round
t in a game induced by a finite or infinite delay mechanism (δ1, . . . , δT). Under the rules
of our game, it ends immediately in round t whenever xt = 0. Let γt be the equilibrium
belief of the uninformed player that his opponent is uninformed (i.e., that the state is M)
at the beginning of round t. Given the initial belief γ1, in any equilibrium in which the
informed player persists after any history, the belief in subsequent rounds is derived from
Bayes’ rule:

γt+1 =
γtxt

γtxt + 1− γt
. (5)

We call γT the deadline belief of the game. Finally, we denote as Ut the equilibrium ex-
pected payoff of an uninformed player at the beginning of round t. This payoff is:

Ut =

γt (xt(−δt + Ut+1) + 1− xt) + (1− γt)(−δt + Ut+1) if xt > 0,

γt (xt(1− 2λ) + (1− xt)(1− λ)) + 1− γt if xt < 1.
(6)

In the above, the top expression is the expected payoff from persisting and the bottom
expression is the expected payoff from conceding. The uninformed player is indifferent
between these actions when xt ∈ (0, 1). We often write Ut(γt) to acknowledge the relation
between Ut and γt. We denote as Vt the equilibrium expected payoff of an informed
player at the beginning of round t, and we write Vt(γt) even though the informed player
knows the state. The ex ante payoff of each player, before they learn their types, is

W1(γ1) =
1

2− γ1
U1(γ1) +

1− γ1

2− γ1
V1(γ1). (7)

An optimal delay mechanism maximizes W1(γ1).

Given a finite delay mechanism (δ1, . . . , δT), an equilibrium of the induced game can
be characterized by a sequence {γt, xt, Ut}T

t=1 that satisfies (5) and (6). The “bound-
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ary conditions” are provided by the initial belief γ1, and by the continuation payoff
UT+1 = 1− λ in the event that both players persist in the last round T. Although it is
possible to solve the equilibrium for some particular delay mechanism (such as one with
constant delay), characterizing all equilibria for any given mechanism is neither feasible
nor insightful. Instead we introduce a “localized variation method” to derive necessary
conditions on an equilibrium induced by an optimal delay mechanism. This method
presumes that equilibrium analysis depends on the incentives of the uninformed player
alone. The analysis of optimal mechanisms, however, requires studying the payoffs to
both uninformed and informed players. The following Lemma provides a link between
the equilibrium payoffs of the informed and uninformed players. It is the first essential
ingredient in our localized variation method.

Lemma 1. (LINKAGE LEMMA) Suppose that a finite delay mechanism with deadline T induces
an equilibrium in which the informed player persists after any history. If in the equilibrium it is a
best response for an uninformed player to persist from some round t ≤ T onward, then

Ut(γt) = γtVt(γt) + (1− γt)

(
1− λ−

T

∑
s=t

δs

)
. (8)

Proof. Suppose an uninformed player persists in each round from round t onwards. With
probability γt, his opponent is an uninformed player who persists with probability xs for
s = t, . . . , T. In this case his payoff would be identical to that of an informed player facing
an uninformed opponent, who uses the same strategy as his own. With probability 1−γt,
his opponent is an informed player who persists in every round. In this case his payoff
would be 1− λ− ∑T

s=t δs. Since persisting from round t onwards is a best response, the
uninformed player’s payoff in round t is given by equation (8).

Although simple, the Linkage Lemma has an important implication. By equation (8),
if raising the total delay ∑T

t=1 δt does not lower U1(γ1), and if persisting in each round
remains a best response, then such a change strictly increases V1(γ1) and hence the ex
ante payoff W1(γ1). The logic is that a greater delay keeps the expected payoff of an
uninformed player unchanged only if it induces him to lower the probabilities of persist-
ing. Since an informed player faces an uninformed opponent with probability 1, while
an uninformed player faces an uninformed opponent with probability γ1 < 1, the same
reduction in probabilities of persisting by the opponent benefits an informed player by
more than it benefits an uninformed player.
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The second ingredient in our localized variation method is a tight upper bound on
how much concession in a given round t before the deadline that the uninformed player
with belief γt can make in equilibrium. We say that round t < T is inactive if xt = 1; there
is no updating of the belief of the uninformed player as neither the uninformed nor the
informed makes any concession. Round t < T is active whenever xt ∈ (0, 1), with the
uninformed player updating his belief from γt to γt+1 according to Bayes rule (5). The
following lemma imposes lower bounds on xt and γt+1 in equilibrium as functions of γt

only.

Lemma 2. (MAXIMAL CONCESSION LEMMA) In any equilibrium in which the informed player
persists after any history, for any t < T and γt > ∆/(λ + ∆), the lowest xt is given by

χ(γt) ≡
γtλ− (1− γt)∆

γt(λ + ∆)
,

and the lowest feasible γt+1 is given by

g(γt) ≡
γtλ− (1− γt)∆

λ
.

Proof. If an uninformed player is randomizing in round t, the indifference condition (6)
requires:

1− γtλ− γtxtλ = (γtxt + 1− γt) (−δt + Ut+1(γt+1)) + γt(1− xt).

In round t + 1, the uninformed player can guarantee a payoff of at least 1 − γt+1λ −
γt+1xt+1λ by conceding with probability one. Therefore, Ut+1(γt+1) ≥ 1− 2γt+1λ, with
equality when xt+1 = 1. Using this bound on Ut+1 and the bound ∆ on δt, we obtain

γtλ + γtxtλ ≤ (γtxt + 1− γt)(∆ + 2γt+1λ).

Using Bayes’ rule for γt+1 and solving for xt, we obtain xt ≥ χ(γt), which is positive if
γt > ∆/(λ + ∆). Since γt+1 is increasing in xt, plugging in the lowest value of xt and
using Bayes’ rule give γt+1 ≥ g(γt).

Maximal concession is attained in round t with belief γt in an equilibrium of a delay
mechanism if and only if there is no slack, defined as follows:

16



Definition 2. There is no slack in an active round t < T if δt = ∆ and Ut+1(γt+1) = 1−
2γt+1λ.

Under the above definition, there is no slack in the static incentives in round t for
truth-telling for the uninformed player, i.e. delay after regular disagreement is maxi-
mized at δt = ∆. Further, there is no slack in the dynamic incentives for truth-telling
if Ut+1(γt+1) = 1 − 2γt+1λ, as the continuation payoff Ut+1(γt+1) for the uninformed
player is minimized. The latter occurs in equilibrium if, after the regular disagreement in
round t, the uninformed player persists with probability 1 in round t+ 1 with xt+1 = 1 but
is indifferent between conceding and persisting. Thus minimizing the continuation pay-
off for the uninformed player entails that the probability of concession in the following
round be zero. A delay mechanism with maximal concession in some round t necessarily
results in stop-and-start equilibrium behavior.

Maximal concession as characterized in Lemma 2, or equivalently no slack in Def-
inition 2, is an equilibrium property. Nonetheless, the lemma is suggestive of how to
increase concession in a localized variation of an equilibrium of some delay mechanism.
In particular, it suggests that the slack can be reduced by raising the effective delay incurred
in round t after a regular disagreement. More precisely, if we denote the active arounds
as t(1) < t(2) < . . ., then

σt(i) ≡
t(i+1)−1

∑
t=t(i)

δt

is the effective delay in round t(i), which includes not only the immediate delay δt(i) but
also all future delays in the inactive rounds between t(i) and t(i + 1), which are incurred
with certainty after the regular disagreement at round t(i). In an active round t, if δt < ∆,
we can raise δt to induce another equilibrium with more concession from the uninformed
player, that is, a lower equilibrium xt. If δt = ∆ but Ut+1(γt+1) > 1− 2γt+1λ, we can
try to achieve the same outcome by inserting an inactive round s with a sufficiently small
delay δs between t and t + 1 so as to raise the effective delay. This is possible because
the continuation payoff Ut+1(γt+1) of the uninformed is not minimized in the original
equilibrium. Indeed, adding inactive rounds is one of main localized variations we use
in the following analysis.

When there is maximal concession by the uninformed player in round t, his belief that
the state is M evolves according to

1− γt+1

1− γt
=

λ + ∆
λ

. (9)
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Comparing this to equation (3), we see that it takes r∗(γ1) active rounds for the belief to
reach from γ1 to γ∗ or below, if the uninformed is making maximal concessions in each
active round.8 A tighter commitment bound ∆ would mean that it requires more active
rounds for the initial degree of conflict γ1 to reduce to the level γ∗, when the conflict can
be efficiently resolved.

4.2. Efficient deadline belief

In this subsection we show that in any optimal delay mechanism with at least two rounds
the Pareto efficient decision is made with probability one. This is clearly the case if there
is some round N < T such that xN = 0 given that the informed player always persists.
If such round N does not exist, then we must have xT = 0 in the last round for the deci-
sion to be Pareto efficient. We prove this result using a localized variation method. The
intuition is that if a delay mechanism does not induce the Pareto efficient decision in the
final round, then it is possible to slightly modify it so as to increase the total delay with-
out affecting the expected payoff of the uninformed. This is accomplished by inducing
the uninformed to play another round of randomization before the final round. Since an
informed player benefits more from concession by the uninformed than an uninformed
player does, the Linkage Lemma implies that the ex ante payoff can be improved.

The modified mechanism we consider first introduces an additional round, s, between
the last active round t(r) and the deadline T. The delay in round s, δs can be initially cho-
sen so that, provided γs = γT, in the continuation equilibrium starting in round s, the
payoff of the uninformed is 1 − 2λγT and in equilibrium xs = 1. Simultaneously, the
delay in the last active round, t(r), can be reduced by an amount equal to δs, so that the
effective delay after a regular disagreement in round t(r) remains unchanged. Thus, the
strategy of the uninformed that maintains the same probability of persistence in every
round other than s, and persists with probability 1 in the new round s is an equilibrium
of the modified mechanism. By construction, in round s both there is slack and the un-
informed is indifferent between persisting and conceding with xs = 1. By the Maximal
Concession Lemma, we can marginally reduce xs from 1 by a small increase in δs in the
continuation equilibrium starting in round s with γs = γT. To prevent this modification
from increasing the payoff after a regular disagreement in round t(r), we compensate
by introducing yet another extra round s′ with an appropriate delay δs′ in between round
t(r) and round s. After the modification, the payoff in the event of a regular disagreement

8Define g(n)(γ) to be such that g(1)(γ) = g(γ) and g(n)(γ) = g(g(n−1)(γ)). Then r∗(γ) is the smallest
integer r such that g(r)(γ) ≤ γ∗.
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in round t(r) remains fixed at the original value of −δt(r) +Ut(r)+1(γt(r)+1). Because both

the initial belief γ1 and the continuation payoff in round t(r) are fixed, if {γt, xt, Ut}t(r)
t=1

is part of equilibrium under the original mechanism, then the same sequence constitutes
part of equilibrium under the modified mechanism.9 In particular, the modified mecha-
nism does not affect U1(γ1).

Since xT > 0, as long as the uninformed persists with probability close to 1 in round
s in the modified mechanism, in equilibrium the probability of persistence in the last
round will still be strictly positive, and it is a best response for the uninformed to persist
in every round. In this localized variation, to lower the probability of persistence below 1
in round s requires raising the delay in round s. As the probability of persistence in round
s decreases, the uninformed player’s payoff increases, and therefore the delay in round s′

must also rise to keep the continuation payoff for round t(r) fixed. As a result the total
delay in the modified mechanism is greater than that in the original mechanism. It then
follows from the Linkage Lemma that the ex ante payoff of the players must increase. The
details of this construction are relegated to the Appendix.

Proposition 1. In an optimal mechanism with at least two rounds, xT = 0.

An immediate corollary to Proposition 1 is that the deadline belief satisfies γT ≤ γ∗.
The next result establishes a counterpoint to Proposition 1. Although the Pareto efficient
decision becomes achievable in the final round so long as a delay mechanism drives the
degree of conflict from γ1 to γT ≤ γ∗, it is generally too costly to force γT to a level too
much below what is needed to achieve efficiency. Specifically, if it takes two or more
rounds to drive γT strictly below γ∗ then the payoff can be improved by ending the game
“earlier,” that is, by reducing the total delay. Thus, in an optimal mechanism the deadline
belief of the uninformed player is efficient, in the sense that it is the highest possible belief
that would ensure the Pareto efficient decision is made with probability 1.

Proposition 2. In an optimal mechanism with at least two active rounds, γT = γ∗.

The argument used to establish Proposition 2 starts with a mechanism that yields
γT < γ∗ in equilibrium, and modifies it so that the belief in the last round increases but
without going above γ∗, with the uninformed still conceding in the last round. The Link-
age Lemma cannot be used for an evaluation of welfare changes because when the dead-
line belief is below γ∗, the uninformed might strictly prefer concession in the last round.

9In constructing this modified mechanism, we take the belief at the beginning of round s to be fixed at
the original value of γt(r)+1 = γT and find the delay in round s that would induce xs < 1. This is justified
because the modified mechanism does not change the equilibrium play prior to round s, ensuring that the
belief at the beginning of round s is indeed fixed.
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To obtain our welfare comparison, we keep the expected payoff of the uninformed con-
stant throughout the modification. This requires the fewer concessions in the equilibrium
of the modified mechanism to be compensated by less delay after regular disagreements
for the uninformed player. We then directly establish that the savings in delay that main-
tains the payoff constant for the uninformed more than compensate the informed for the
fewer concessions before an agreement is reached.

The formal proof of the proposition, provided in the Appendix, distinguishes between
the case when in the original mechanism the belief goes below γ∗ before T and the case
when it does so in round T. In the first case, in the modified mechanism the effective de-
lay in the last active round t(r) is reduced to the level so that the uninformed is indifferent
between persisting and conceding at x̃t(r) = 1. This is achieved by setting σ̃t(r) = γt(r)λ.
The effective delay of the previous active round t(r− 1) is also reduced to keep the con-
tinuation payoff in round t(r− 1) unchanged.10 In the second case, the effective delay in
the last active round is reduced enough so that the equilibrium probability of concession
brings the deadline belief to exactly γ∗. Again, the effective delay of the previous active
round is also reduced to keep the continuation payoff of the uninformed in round t(r− 1)
unchanged. In both cases, the modified mechanism has an equilibrium where the unin-
formed behavior only changes in round t(r) and, by construction, the expected payoff of
the uninformed is left unchanged.

The payoff changes for the informed player occur only to the continuation payoff in
the next-to-last active round (i.e., round t(r− 1)). The tradeoff is between a lower prob-
ability of persistence xt(r) in the last active round t(r) in the original mechanism, versus
a smaller delay both in round t(r) and in round t(r − 1) for the modified mechanism.
Using the equilibrium conditions that the uninformed is indifferent between conceding
and persisting in round t(r) and that the change in effective delay leaves his continuation
payoff in round t(r − 1) unchanged, we can show that the informed is strictly better off
in the modified mechanism.

In addition to its inherent value, Proposition 2 is useful because γT = γ∗ implies
that it is a best response to persist throughout the game. This means that in the rest of our
analysis of optimal mechanism, we can apply the Linkage Lemma to facilitate comparison
of payoff to the informed whenever r∗(γ1) ≥ 2.

10This is why the proposition requires at least two active rounds. In case (b) of Main result, there is a
single active round before T and we have γT < γ∗ under an optimal delay mechanism. But even in this
case, γT cannot be below g(γ∗).
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4.3. Stop-and-start

In this subsection, we provide a series of lemmas that characterize the presence or ab-
sence of slack in an optimal mechanism, leading to the main characterization result of
Proposition 3. The key result is the following lemma.

Lemma 3. A mechanism with slack in both round t(i) and round t(i + 1), i = 2, . . . , r − 1, is
not optimal.

The presence of slack in two consecutive active rounds t(i) and t(i + 1) means that it
is possible, by appropriately changing the effective delays, to both increase and decrease
the probabilities of persistence, xt(i) and xt(i+1), of the uninformed in the two rounds. In
the localized variation argument used to proof Lemma 3 (the details are provided in the
Appendix,) we modify the effective delays in both round t(i) and t(i + 1) while main-
taining xt(i)xt(i+1) constant. From repeated applications of Bayes’ rule (5), this guarantees
that the belief γt(i+2) after the regular disagreement in round t(i + 1), and hence the con-
tinuation equilibrium, is left unchanged (we set t(i + 2) = T if i = r − 1) . Finally, an
appropriate change in the effective delay in round t(i− 1), keeps the continuation payoff
after a regular disagreement in round t(i− 1) constant; this explains why we assume that
t(i) is not the first active round. As a result, the original equilibrium sequence {γt, xt, Ut}
remains unchanged in the modified mechanism from round 1 to t(i− 1) and from round
t(i + 2) to T. By the Linkage Lemma, we only need to calculate the total delay between
round t(i− 1) and t(i + 2) to evaluate the effect of this modification on the ex ante payoff.

One can think of this localized variation exercise as choosing γt(i+1) to maximize the
total delay, while holding fixed γt(i) and γt(i+2) (as well as the continuation payoff in
round t(i− 1)). From the Maximal Concession Lemma, the feasible set for γt(i+1) is(

max
{

γt(i+2), g(γt(i))
}

, min
{

γt(i), g−1(γt(i+2))
})

.

In the proof of Lemma 3, we show that the total delay is a convex function of γt(i+1).
When there is slack in both round t(i) and round t(i + 1), γt(i+1) is in the interior of the
feasible set. So the mechanism cannot be optimal.

Since there cannot be slack in both round t(i) and t(i + 1), the total delay as a function
of γt(i+1) in the problem considered above is maximized either at γt(i+1) = g(γt(i)) (no
slack in round t(i)) or at γt(i+1) = g−1(γt(i+2)) (no slack in round t(i + 1)). It turns out
that these two choices of γt(i+1) entail the same total delay, and are therefore payoff-
equivalent.
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Lemma 4. Let i ≥ 2. Holding fixed xt(i)xt(i+1), and xt(s) for all t(s) 6= t(i), t(i + 1), a mecha-
nism with slack in round t(i) but no slack in round t(i + 1) is payoff-equivalent to a mechanism
with no slack in round t(i) but slack in round t(i + 1).

Clearly, in any optimal delay mechanism, the first active round is round 1. In fact, the
next result shows that it is optimal to have no slack and to induce maximal concession by
the uninformed player in the first round, if there are at least two active rounds.

Lemma 5. In an optimal mechanism with at least two active rounds, there is no slack in the first
round.

The localized variation construction used in the proof of Lemma 5 is similar to that
used for Lemma 3. Suppose that there is slack in the first round. In the modified mecha-
nism effective delay in the first round is raised to lower the probability of persistence x1.
Simultaneously, the effective delay in the second active round is reduced to increase the
probability of persistence xt(2) to keep the belief after two active rounds constant. How-
ever, unlike the localized variation in the proof of Lemma 3, in the modified mechanism
the expected payoff of the uninformed necessarily increases. This is because lowering x1

raises the expected payoff of the uninformed in round 1, U1(γ1), but there is no previous
round for which we can increase the effective delay to compensate for the improvement
in the uninformed payoff. Also, the Linkage Lemma does not apply. Instead we calculate
the changes in U1(γ1) and V1(γ1) directly and show that both changes are positive.

The following proposition summarizes the results from our series of lemmas.

Proposition 3. In an optimal mechanism, there can be at most one active round with slack. If
there are at least two active rounds, there is no slack in the first round.

Proof. Let t(j) be the first active round with slack and t(j′) be the last one with slack. By
Lemma 5, j ≥ 2. By Lemma 3, the mechanism cannot be optimal if j′ = j + 1. Since
there is slack in round t(j) and no slack in round t(j + 1), by Lemma 4, we can construct
a mechanism for which the first round with slack is t(j + 1) and the last round with slack
is t(j′), and which is payoff-equivalent to the original mechanism. If j′ = j + 2, these two
rounds with slacks will be adjacent and therefore the mechanism cannot be optimal by
Lemma 3. If j′ > j + 2, we proceed iteratively to a mechanism for which the first round
with slack is t(j + 2) and the last round with slack is t(j′), and which is payoff-equivalent
to the original mechanism. Since the number of rounds is finite, this construction even-
tually produces a mechanism with two adjacent rounds with slack, which by Lemma 3
contradicts the assumption that it is optimal. So an optimal mechanism can have at most
one round with slack. Furthermore, by Lemma 5, it cannot be the first round.
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Proposition 3 establishes that all (but possibly one) active rounds in an optimal mech-
anism are without slack. By the Maximal Concession Lemma, this means that the prob-
ability of concession by the uninformed player is maximized in these active rounds. The
efficient deadline belief γ∗ is reached in the least possible number of active rounds. More-
over, since Ut(i)+1(γt(i)+1) = 1− 2γt(i)+1λ when there is no slack in round t(i), this also
means that the uninformed player is making no concession (i.e., xt(i)+1 = 1) right after the
round when he made the maximal concession. In other words, an active round must be
followed by an inactive round. After that, in the next active round t(i+ 1), they will make
the maximal concession again provided there is no slack in round t(i + 1). In this sense
equilibrium play exhibits a stop-and-start pattern, alternating between maximal conces-
sion and no concession. Slack in one round might be needed to prevent the deadline belief
from becoming inefficiently low.

4.4. Optimal delay mechanism

In this subsection we use the properties of optimal delay mechanisms established so far to
derive a complete characterization of all optimal mechanisms. As the initial belief varies,
the minimum number of active rounds needed for the belief to reach γ∗ changes. We
distinguish two cases.

First, consider the case where r∗(γ1) ≥ 2, and assume that T ≥ 2. When there is
no slack in some round t(i), the belief evolves according to γt(i+1) = g(γt(i)). Recall
from our discussion of the Maximal Concession Lemma that the greatest extent of belief
updating feasible occurs when there is no slack in an active round. Such belief evolution
is determined by equation (9); hence it takes at least r∗(γ1) active rounds for belief to
reach from γ1 to γ∗. Since the initial belief γ1 is given and the end belief γT must be γ∗

(Proposition 2), the fact that there can be at most one round with slack (Proposition 3)
implies that there are exactly r∗(γ1) active rounds in an optimal mechanism.

Recall also that the “residue” η defined in (4) satisfies 1 < η ≤ (λ + ∆)/λ. If η =

(λ + ∆)/λ, the belief reaches from γ1 to γ∗ with r∗ rounds of randomization, with no
slack in any of the r∗ rounds. If η < (λ + ∆)/λ, to satisfy the restriction imposed by
Proposition 3, we need r∗ − 1 rounds of randomization with no slack, and one round
of randomization with slack. By Lemma 4, which round is given the slack is payoff-
irrelevant; let us assume that the round with slack is r∗, the last active round before the
deadline.11

11Although it is optimal to have slack in any round t(j), j = 2, . . . , r∗, choosing j = r∗ is special because
such a mechanism would be “time-consistent.” If j 6= r∗, when the game reaches round t(j), the mechanism
would no longer be optimal because it violates Lemma 5.
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For each i = 1, . . . , r∗ − 2, we have δt(i) = ∆. The equilibrium belief evolves according
to γt(i+1) = g(γt(i)) and the equilibrium probability of persisting is xt(i) = χ(γt(i)). The
condition that there is no slack in round t(i) requires:

Ut(i)+1(γt(i)+1) = 1− γt(i+1)λ− γt(i+1)χ(γt(i+1))λ−
t(i+1)−1

∑
t=t(i)+1

δt = 1− 2γt(i+1)λ,

which gives
t(i+1)−1

∑
t=t(i)+1

δt =
λ∆

λ + ∆
.

Note that the total delay between successive active rounds is constant across i. How
this sum is distributed across the intervening rounds is immaterial. However, since the
sum is less than ∆, the optimal mechanism can be implemented with just one intervening
inactive round between any two successive active rounds. This corresponds to the first
line of the delay mechanism described in case (c) of our Main Result.

For round t(r∗ − 1), no slack implies that δt(r∗−1) = ∆. Further, the equilibrium belief
evolves according to γt(r∗) = g(γt(r∗−1)) and the equilibrium probability of persisting is
xt(r∗−1) = χ(γt(r∗−1)). The condition that there is no slack in round t(r∗ − 1) requires:

1− γt(r∗)λ− γt(r∗)xt(r∗)λ−
t(r∗)−1

∑
t=t(r∗−1)+1

δt = 1− 2γt(r∗)λ. (10)

To solve this equation, note that xt(r∗) must be such that the belief after round t(r∗) is
equal to γ∗. Using this and the fact that (1− γ∗)/(1− γt(r∗)) = η, we obtain:

xt(r∗) =
1− (1− γt(r∗))η

γt(r∗)η
. (11)

Given the above expression, solving (10) gives:

t(r∗)−1

∑
t=t(r∗−1)+1

δt =
(η − 1)λ

η
.

Since η ≤ (λ + ∆)/λ, the above is less than or equal to ∆/(λ + ∆)λ. So the optimal
mechanism can be implemented with just one intervening inactive round between t(r∗ −
1) and t(r∗). This corresponds to the second line of the mechanism described in case (c)
of our Main Result.
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In round t(r∗), there is generally slack, unless η is equal to its upper bound. The
equilibrium probability of persisting xt(r∗) is given by equation (11) above, and by con-
struction the belief after a regular disagreement would become γ∗. To find the effective
delay in round t(r∗), we use the fact that UT(γT) = 1−γ∗λ and the indifference condition
in round t(r∗) to obtain:

T−1

∑
t=t(r∗)

δt =
γt(r∗)(1− γ∗)λ

1− γt(r∗)
= (η − 1 + γ∗)λ.

Although how the above effective delay is distributed is payoff-irrelevant, we can always
choose δt(r∗) = (η − 1)λ ≤ ∆ and

T−1

∑
t=t(r∗)+1

δt = γ∗λ.

When η = (λ + ∆)/λ so that there is no slack in round t(r∗), the above distribution is the
only optimal way. The rounds t(r∗) + 1 through T − 1 constitute the deadline play in an
optimal delay mechanism, with no concession from the uninformed.12 This corresponds
to the third line of the mechanism described in case (c) of our Main Result.

Finally, in the last round T, since the belief is γT = γ∗, choosing δT = ∆ would induce
the uninformed to play xT = 0, which always ends the game with the Pareto efficient
decision. This corresponds to the last line in case (c) of our Main Result.

Summing over all rounds, the total delay is

T

∑
t=1

δt = (r∗ − 2)
(

∆ +
λ∆

λ + ∆

)
+

(
∆ +

(η − 1)λ
η

)
+ (η − 1 + γ∗)λ + ∆. (12)

In an optimal mechanism, the payoff to the uninformed is given by

U1(γ1) = 1− 2γ1λ +
λ∆

λ + ∆
. (13)

The payoff to the informed player V1(γ1) can be obtained using equation (8). This com-
pletes the derivation of the optimal delay mechanism assuming that r∗(γ1) ≥ 2 and T ≥ 2
so that the ex ante payoff W1(γ1) is greater than the coin flip payoff 1− λ (i.e., case (d) of
Main Result does not apply.)

12The effective delay can be larger than the bound ∆. In this case, the uninformed player persists for more
than one round in the deadline play.
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Next, consider the second case of r∗(γ1) = 1, and again assume that T ≥ 2 so that the
ex ante payoff W1(γ1) is greater than the payoff from the one-round delay mechanism
with maximal delay ∆ (i.e., case (a) of Main Result does not apply.) In this case, the first
round is the only active round. To see this, suppose that an optimal mechanism induces
two or more active rounds prior to the final round. By Proposition 2, γT = γ∗, and by
Proposition 3, there is no slack in all except one of these active rounds, which contradicts
the assumption that r∗(γ1) = 1.

Since the first round is the only active round, and since r∗(γ1) = 1, we have γT ≤ γ∗.
From the indifference condition for the uninformed, the effective delay σ1 associated with
such a mechanism satisfies x1σ1 = γTλ. Now, consider the payoff to the uninformed.
Since U1(γ1) = 1− γ1λ − γ1x1λ, his payoff is maximized when x1 is minimized. The
payoff to the informed is V1(γ1) = 1− x1σ1 = 1− γTλ, which is maximized when x1 is
minimized. Thus, there is no slack in round 1. By the Maximal Concession Lemma, an
optimal sequence of delays that can implement this outcome is given by δ1 = ∆, and

T−1

∑
t=2

δt = g(γ1)λ = γ1λ− (1− γ1)∆.

The above corresponds to the first line in case (b) of Main Result, and is the deadline play
in this case. At the final round, choosing δT = ∆ induces xT = 0, corresponding to the
second line in case (b) of Main Result.

To complete the derivation of optimal delay mechanisms given in the Main Result, we
compute the ex ante payoffs for the dynamic delay mechanisms (cases (c) and (b)) and
compare them with the payoffs from a coin flip (case (d)) and from the one-round delay
mechanism with maximum delay (case (a)). By construction, there is no overlapping be-
tween cases (c) and (b), which require r∗(γ1) ≥ 2 and r∗(γ1) = 1 respectively. Intuitively,
case (d) applies when γ1 is sufficiently close to 1 so that the benefit from a Pareto optimal
decision through a delay mechanism given in case (c), with start-and-stop and deadline
play, is overwhelmed by the cost of delay incurred. Likewise, case (a) applies when γ1

is sufficiently close to γ∗ so that the benefit from a dynamic delay mechanism given in
case (b), with a Pareto optimal decision and deadline play, does not justify the additional
cost of delay relative to a static delay mechanism. The calculations are relegated to the
Appendix.

Proposition 4. There exist γ and γ, with γ∗ < γ < γ < 1, r∗(γ) = 1, and r∗(γ) ≥ 2 if
and only if ∆ < (

√
2− 1)λ, such that the one-round delay mechanism with maximum delay is

optimal if and only if γ1 ≤ γ, and flipping a coin is optimal if and only if γ1 ≥ γ.
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4.5. Finite delay

Our localized variation approach assumes that the informed player persists after each his-
tory and thus equilibrium analysis depends on the incentives of the uninformed player
alone. Intuitively, whenever the uninformed player weakly prefers persisting to conced-
ing, the informed player strictly does so. In this subsection, we validate this intuition and
show that this is in fact the case in any equilibrium of any delay mechanism. We achieve
this using a backward induction argument, which requires us to establish the first prop-
erty of the optimal delay mechanism characterized in Main Result, that it is finite.

An infinite delay mechanism may be represented with any infinite sequence {δt}∞
t=1.

Assuming that the payoff from never implementing either alternative is worse than the
payoff from implementing any alternative, we show that any infinite delay mechanism is
effectively finite. That is, there exists an N such that the induced game ends with probabil-
ity 1 before round N in any equilibrium.

Lemma 6. Any infinite delay mechanism is effectively finite.

Lemma 6 follows from a series of claims. First, we show that in any equilibrium that
induces a distribution of end times with unbounded support, the informed is persisting
with probability one at all times. This is done by showing that at any time when it is
optimal for the uniformed to persist it is uniquely optimal for the informed to do the same.
This property implies that in any such equilibrium, the belief γt of the uninformed player
is eventually decreasing and hence will converge. The conclusion that the mechanism is
effectively finite follows from demonstrating that γt must converge to zero, which makes
it optimal eventually for the uninformed to concede with probability one.

By Lemma 6, we can restrict to finite mechanisms and infinite mechanisms that are
effectively finite. In either case we can apply backward induction to show that Vt ≥ Ut

for all t in any equilibrium, which leads to the following result.

Proposition 5. In any delay mechanism, the informed player persists with probability 1 in any
equilibrium.

The above proposition holds for any delay mechanism and any equilibrium. The proof
in the appendix makes it clear that the argument does not invoke properties that rely
on optimality of the delay mechanism under consideration. Instead, it is driven by the
feature in our model that the informed player knows the state is a common interest state
and that his opponent is uninformed and should concede.
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5. Discussion

5.1. Continuous-delay limit

We have seen in Section 2.1 that in the absence of costly delay, there is no incentive com-
patible mechanism that Pareto dominates a coin flip in our committee model. That is, if
the uniform upper bound ∆ on delay is identically zero, flipping a coin is the only sym-
metric incentive compatible outcome. From the continuous-delay model of Damiano, Li
and Suen (2012), we already know that the set of incentive compatible outcomes is dis-
continuous at ∆ = 0. In this subsection, we derive the limit of optimal delay mechanisms
characterized in the present paper as ∆ converges to zero, and show that it coincides with
the optimal deadline in the continuous-delay model of Damiano, Li and Suen (2012) (after
adjusting for the differences in the payoff structure in the latter model).

As ∆ goes to 0, from (13) we have

lim
∆→0

U1(γ1) = 1− 2γ1λ.

The total number of rounds of course goes to infinity, but we have

lim
∆→0

(
1 +

∆
λ

)r∗
= lim

∆→0

1− γ∗
1− γ1

,

which implies
lim
∆→0

r∗∆ = −λ log(2(1− γ1)).

Furthermore, since (λ + ∆)/λ ≥ η ≥ 1, η goes to 1 as ∆ goes to 0. Therefore, the limit of
the total delay (12) is

lim
∆→0

T

∑
t=1

δt = −2λ log(2(1− γ1)) +
λ

2
.

Using equation (8) for the relationship between U1(γ1) and V1(γ1), we obtain:

lim
∆→0

V1(γ1) = 1− 2λ + 2λ
1− γ1

γ1

(
3
4
− log(2(1− γ1))

)
.

For the optimal deadline mechanism we consider in Damiano, Li and Suen (2012), the
value function V∗(γ) satisfies the differential equation:

dV∗(γ)
dγ

=
1− 2γλ−V∗(γ)

γ(1− γ)
.
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Furthermore, the optimal deadline mechanism entails the boundary condition V∗(1/2) =
1− λ/2. Solving this differential equation gives V∗(γ) = lim∆→0 V1(γ).

5.2. General payoff structures

The committee model of Damiano, Li and Suen (2012) has the same information structure
as the present model, but with a slightly different payoff structure that in some sense is
more general. The following table illustrates a general payoff structure that incorporates
both models as special cases.

L M R

l (ν + β, ν) (ν + β, ν) (ν + β, ν)

r (ν, ν + β) (ν, ν + β) (ν, ν + β)

In the above table, ν is the common value component of each player’s payoff when the
correct decision is made in a common interest state, i.e., l is chosen in state L or r is chosen
in state R. Likewise, ν < ν is the common value component when the wrong decision is
made in a common interest state or when either alternative is chosen in the conflict state
M. The non-negative private value component in each player’s payoff is only obtained
by the player whose ex ante favorite alternative is chosen, and it depends on the state and
on the alternative chosen: β is obtained in the conflict state M, and β and β in the common
interest states with the former corresponding to the correct alternative and the latter the
wrong one. In the present committee model we have β = β = 0 and β = ν − ν (with
ν = 1 and ν = 1− 2λ), while in Damiano, Li and Suen (2012) we have β = β = β > 0.

By allowing the private value components β, β and β to take on different values, we
can use the above general payoff structure to capture a variety of mixtures with common
values and private values. Of course, for L and R to be common interest states, we need
β < ν− ν. This assumption also ensures that in delay mechanisms the informed player
always persists in equilibrium.

A full characterization of optimal delay mechanisms under the general payoff struc-
ture is cumbersome because the Linkage Lemma no longer holds. Unlike in the present
payoff structure, the informed player gets ν + β when the uninformed opponent con-
cedes, which is different from the payoff of ν + β that the uninformed player gets. Fur-
thermore, the coin-flip payoff for the informed player, (ν + ν + β)/2, is different from the
coin-flip payoff of for the uninformed player, which is ν + β/2 in the conflict state and
(ν + ν + β)/2 in the corresponding common interest state. As a result, maximizing the
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total delay while keeping the payoff to the uninformed player unchanged and maintain-
ing his willingness to persist through the game is not the same as maximizing the payoff
to the informed player.

Despite the failure of the Linkage Lemma, the qualitative features of optimal delay
mechanisms established in the Main Result (finite delay, efficient deadline belief and stop-
and-start) are all robust with respect to the payoff structure. The critical feature of the
model turns out to be the information structure, not the payoff structure. The dichotomy
between the equilibrium analysis of the uninformed player and the welfare analysis of
the informed player, repeated exploited in our localized variational approach, is possi-
ble because the informed player knows the state and in any equilibrium under a delay
mechanism always persists with probability one. To illustrate this point, we briefly ex-
plain how to establish Lemma 3 under the general payoff structure, which is the key to
the stop-and-start feature of optimal delay mechanisms.

To show that a mechanism with slack in two consecutive rounds t(i) and t(i + 1) is
suboptimal, we use the same localized variation exercise of changing σt(i−1), σt(i) and
σt(i+1) to keep γt(i) and γt(i+2) unchanged. The expressions for σt(i−1), σt(i) and σt(i+1)

involving the free variable γt(i+1) are the same as the ones in the proof of Lemma 3 in the
appendix, except that λ is replaced with β/2. Since the sequence {γt, xt, Ut} is unaffected
in the variation for t ≥ t(i + 2), so is Vt(i+2). We can then write Vt(i−1) forward as a
function of the single variable γt(i+1). The only non-linear term that depends on γt(i+1)

involves 1/(1− γt(i+1)), and has a positive coefficient. Thus, the expected payoff of the
informed player, Vt(i−1), is a convex function of γt(i+1). As in the current proof of Lemma
3, since there is slack in both round t(i) and round t(i + 1), γt(i+1) is in the interior of the
feasible set, which implies that the mechanism cannot be optimal.13

The reason that the coefficient of the term involving 1/(1− γt(i+1)) is positive is that
an increase in γt(i+1) requires a decrease in σt(i−1) and an increase in σt(i+1) to keep re-
spectively γt(i) and γt(i+2) constant. The former change has a greater impact on Vt(i−1)

because the impact of the latter is “discounted” by the concessions made by the unin-
formed player during the intervening round of t(i).

13Lemma 4 also hods. We still have the payoff-equivalence result for the same reason: it remains true
that (1− g(γt(i))(1− g−1(γt(i+2)) = (1− γt(i))(1− γt(i+2)) for properly redefined function g. This is due
to the fact that the terms in Vt(i−1) that are involved in the localized variation argument are independent of
the payoff structure for the informed.
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5.3. General delay mechanisms

Consider a more general mechanism design problem where, in addition to the sequence
of delays {δt}T

t=1 after each regular disagreement in round t, a continuation payoff Ut

after a reverse disagreement in round t has to be chosen as well, where Ut ranges from
1 − λ, which is what we have assumed so far, to 1 − λ − ∆, depending on the delay
imposed before flipping a coin. This way of modeling general delay mechanisms after any
disagreement is without loss of generality, as long as we restrict to symmetric Bayesian
equilibria in finite delay mechanisms in which the informed player persists regardless of
history.

The Linkage Lemma (Lemma 1) remains valid in this more general design problem,
because Ut does not appear in the expected payoff of an uninformed player that always
persists on the equilibrium path. Since it is based on Lemma 1, Proposition 1 also holds.
The argument here amends the original proof by first establishing that UT = 1 − λ if
xT > 0. To see this, suppose not. If xT = 1 and the uninformed strictly prefers persisting
to conceding, we can keep raising UT until either UT = 1− λ, or the uninformed becomes
indifferent. If xT < 1, the indifference condition is

1− γT (1−UT)− γTxT (2λ− (1−UT)) = 1− (γTxT + 1− γT)(δT + λ).

Solving for xT, we have

xT =
γT (1−UT)− (1− γT)(δT + λ)

γT (1−UT − λ + δT)
.

For fixed γT, an increase in UT decreases xT and thus increases UT(γT). Since the effect
of an increase in UT(γT) on the last active round t(r) before T can be neutralized for the
uninformed by adding auxiliary rounds between t(r) and T, it follows immediately from
Lemma 1 that the informed are better off with any change to the payoff of the uninformed,
a contradiction establishing that an optimal general mechanism has UT = 1− λ. The rest
of the proof of Proposition 1 goes through without change.

Given that Proposition 1 holds and thus xT = 0, we can improve our optimal delay
mechanism when it has just one active round before the deadline round T, by lowering
the continuation payoff UT after a reverse disagreement in the deadline round. To be
precise, suppose that r∗(γ1) = 1 and we are in case (b) of Main Result. Our original
construction requires the first round to be active with no slack, implying that γT < γ∗.
Now, consider reducing UT marginally to ŨT and simultaneously reducing σ1 to σ̃1, such
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that
−σ̃1 + 1− γT(1− ŨT) = −σ1 + UT(γT).

Then, the uninformed still strictly prefers conceding to persisting in the deadline round
with the same γT, and thus it remains an equilibrium in the first round with the same x1

and U1(γ1). Moreover,

Ṽ1(γ1) = 1− x1σ̃1 > 1− x1σ1 = V1(γ1),

so the informed is better off.

When the optimal delay mechanism given in Main Result has at least two active
rounds before the deadline, it generally has one active round—not the first one—with
slack, and we can adjust the continuation payoff Ut after the reverse disagreement in the
round with slack to improve on it. More precisely, suppose that r∗(γ1) ≥ 2, so we are in
case (c) of Main Result with η < (λ + ∆)/λ. By Lemma 4 and Lemma 5, the total amount
of slack is then ∆− λ(η − 1), independent of which active round it appears in except for
round 1. In the equilibrium constructed in Main Result, the last active round t(r∗) (round
2r∗ − 1 in case (c) of Main Result) is the one with slack, where δt(r∗) = λ(η − 1) < ∆,
belief γt(r∗) satisfies (1− γ∗)/(1− γt(r∗)) = η and xt(r∗) is given by equation (11), with the
indifference condition:

Ut(r∗)(γt(r∗)) = γt(r∗)

(
xt(r∗)(1− 2λ) + (1− xt(r∗))Ut(r∗)

)
+ 1− γt(r∗)

=
(

γt(r∗)xt(r∗) + 1− γt(r∗)

) (
−σt(r∗) + Ut(r+1)(γt(r+1))

)
+ γt(r∗)(1− xt(r∗)).

Consider reducing Ut(r∗) marginally from 1− λ to Ũt(r∗) and simultaneously increasing
σt(r∗) to σ̃t(r∗), such that the above indifference condition holds at the same xt(r∗) and
Ut(r+1)(γt(r+1)). This is feasible because there is slack in round t(r∗), with δt(r∗) < ∆.
These modifications of Ut(r∗) and σt(r∗) reduce the continuation payoff for the uninformed
in round t(r∗) from Ut(r∗)(γt(r∗)) to Ũt(r∗)(γt(r∗)), but since t(r∗) is not the first active
round, the effects can be neutralized by reducing the effective delay σt(r∗−1) in round
t(r∗ − 1) by

Ũt(r∗)(γt(r∗))−Ut(r∗)(γt(r∗)) = (γt(r∗)xt(r∗) + 1− γt(r∗))(σ̃t(r∗) − σt(r∗)).

The change in the total delay is positive because xt(r∗) < 1, and thus, by Lemma 1, the
payoff to the uninformed is kept unchanged while that to the informed is increased.
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In spite of the improvements we can make upon the optimal delay mechanism char-
acterized by Main Result through adjusting the continuation payoff Ut after a reverse
disagreement, the design problem of the optimal general delay mechanism remains qual-
itatively similar. An important reason for this that the Maximum Concession Lemma
(Lemma 2) continues to characterize the lowest feasible xt and γt+1 for any t < T and γt

sufficiently high. To see this, note that to obtain the lower bounds, in addition to maxi-
mizing the current delay by choosing δt = ∆, it is now necessary to maximize the current
reverse disagreement payoff by choosing Ut = 1− λ, as well as minimize the payoff that
the uninformed gets in round t + 1 by conceding after a regular disagreement

Ut+1(γt+1) = γt+1 (xt+1(1− 2λ) + (1− xt+1)Ut+1) + 1− γt+1.

By Assumption (1), since Ut+1 is less than 1− 2λ, the lowest payoff the uninformed can
guarantee after a regular disagreement remains 1− 2γt+1λ. Because Lemma 2 continues
to hold, the important feature of stop-and-start of our optimal delay mechanism is un-
changed. In the current proof of the result (Lemma 3), we show that for fixed starting
belief γt(i) and ending belief γt(i+2), the total delay implied by the three indifference con-
ditions in rounds t(i), t(i + 1) and t(i + 2) is convex in the belief γt(i+1). This remains true
in the general design problem with choices of continuation payoffs after reverse disagree-
ments, because for fixed choices of Ut(i) and Ut(i+1), the total delay required to update the
belief from γt(i) to γt(i+2) in any equilibrium can be shown to be convex in γt(i)+1.

A complete characterization of the optimal general delay mechanism is complicated
by the fact that Proposition 2 no longer holds. That is, it may not be optimal to end the
game at the highest belief that induces concession with probability by the uninformed.
This is an implication of our earlier observation that if there is only a single active round
before the deadline T under the optimal delay mechanism given in case (b) of Main Re-
sult, the mechanism can be improved upon by pushing down the deadline belief γT

through some delay after the final reverse disagreement (i.e., by lowering UT). At the
critical initial belief γ1 = g−1(γ∗) when the optimal delay mechanism given by Main Re-
sult switches from case (b) to case (c), this improvement remains valid, so by continuity
when γ1 is just above the critical belief, it is not optimal to have a deadline belief equal to
γ∗ if the continuation payoff after the last reverse disagreement can be adjusted. We will
not attempt to characterize the optimal general delay mechanism, as it adds little insight
beyond what we have discussed above.
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Appendix

Proof of Proposition 1. Suppose by way of contradiction that xT > 0 in an optimal mech-
anism. This implies γT ≥ 1/2. Let t′ be the last round before T for which conceding is
weakly preferred to persisting. If there is slack in the last active round t(r), then t′ = t(r);
if there is no slack in round t(r), then t′ = t(r) + 1. Such t′ must exist for the mechanism
to be optimal. We first obtain some bounds on the total delay from round t′ onward.

Claim 1. Let t′ < T be the last round before T in which the uninformed player weakly
prefers conceding to persisting. Then, δt′ + ∑T−1

t=t′+1 δt ≥ UT(γT)− (1− 2γt′λ). Further,

∑T−1
t=t′+1 δt ≤ UT(γT)− (1− 2γTλ), with strict inequality if t′ − 1 < T.

To establish the first inequality of Claim 1, note that in round t′, since persisting is not
strictly preferred to conceding by the uninformed, we have the indifference condition

1− γt′λ− γt′xt′λ = (γt′xt′ + 1− γt′)

(
−δt′ −

T−1

∑
t=t′+1

δt + UT(γT)

)
+ γt′(1− xt′),

which can be rewritten as

γt′xt′

(
1− λ + δt′ +

T−1

∑
t=t′+1

δt −UT(γT)

)

= (1− γt′)

(
−δt′ −

T−1

∑
t=t′+1

δt + UT(γT)

)
− (1− γt′) + γt′λ.

We note that 1− λ + δt′ + ∑T−1
t=t′+1 δt −UT(γT) > 0: otherwise, the right-hand-side of the

above is strictly positive because γt′ > γT ≥ 1/2, which is a contradiction. Given that
the left-hand-side expression is positive, it must be increasing in xt′ . Evaluating the indif-
ference condition at xt′ = 1 gives the first inequality of Claim 1. The second inequality is
obtained from the condition that uninformed player strictly prefers persisting to conced-
ing in round t′ + 1 if t′ + 1 < T. If t′ = T − 1 the inequality follows from the uninformed
weakly prefers persisting to conceding in round T, with ∑T−1

t=t′+1 δt = 0.

Next, we make the following modification to the original mechanism:

1. Introduce two “extra rounds” s′ and s between t′ and t′ + 1 (round s′ before s). Set
δs′ = 0, and δs = UT(γT)− (1− 2γTλ)−∑T−1

t=t′+1 δt ≡ ζ. Subtract the amount ζ from
δt′ in round t′.

2. Marginally raise δs from its original value of ζ in step 1, while at the same time
raising δs′ from its original value of 0 in such a way to keep −δs′ + Us(γs) fixed.
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Step 1 of this construction is feasible because Claim 1 and the fact that γt′ ≥ γT imply
ζ < δt′ ≤ ∆ and ζ ≥ 0. Given this construction, the effective delay σt′ remains un-
changed in round t′. Moreover, the uninformed is just indifferent between persisting and
conceding with xs = 1 in round s. In round s′, since δs′ = 0, xs′ = 1 is consistent with
equilibrium. This step has no effect on the equilibrium play in all other rounds and it has
no effect on the ex ante payoff.

Step 2 of the construction attempts to marginally lower γT by reducing xs from its
original value of 1 to a value below 1. Since δs = ζ < ∆, there is slack in round s, so the
modification is feasible. The effect on the ex ante payoff depends on whether the value of
UT(γT) is changed by this step. There are two cases to consider.

In case (i), the uninformed player strictly prefers persisting to conceding in round
T under the original mechanism. In this case, marginally changing δs would lower γT

marginally but would leave xT = 1 under the modified mechanism. The value of UT(γT)

would be fixed at 1− λ− δT. Since xt′+1 = . . . = xT = 1, the uninformed is indifferent
between persisting and conceding in round s if

1− γsλ− γsxsλ = (1− γs + γsxs)

(
1− λ− δs −

T

∑
t=t′+1

δt

)
+ γs(1− xs).

For fixed γs, we can differentiate with respect to xs to obtain:

(1− γs + γsxs)
dδs

dxs
= −γs

(
δs +

T

∑
t=t′+1

δt

)
.

Therefore dδs/dxs < 0. In other words, step 2 would require us to raise δs.

In case (ii), the uninformed player is indifferent between persisting and conceding in
round T under the original mechanism. In this case, lowering γT would change the value
of UT(γT). The indifference condition in round s is:

1− γsλ− γsxsλ = (1− γs + γsxs)

(
UT(γT)− δs −

T−1

∑
t=t′+1

δt

)
+ γs(1− xs),

where UT(γT) = 1− γTλ− γTxTλ, and γT depends on xs through Bayes’ rule. Differen-
tiate with respect to xs to obtain:

(1−γs +γsxs)
dδs

dxs
= γs

(
−1 + λ− δs −

T−1

∑
t=t′+1

δt + UT(γT)

)
+(1−γs +γsxs)

dγT

dxs

dUT(γT)

dγT
.
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We have already established the claim that the first term on the right-hand-side is nega-
tive. Furthermore, dγT/dxs > 0 by Bayes’ rule, and

dUT(γT)

dγT
= −(1 + xT)λ− γT

dxT

dγT
λ < 0,

because the indifference condition in round T ensures that dxT/dγT > 0. Thus we again
have dδs/dxs < 0 in this case.

For both cases (i) and (ii), when xs falls, other things being equal, this would increased
Us(γs). Our construction in step 2 raises δs′ in such a way to keep the continuation value
−δs′ + Us(γs) constant. Since Us(γs) = 1− γsλ− γsxsλ, the change in δs′ needed to keep
the continuation value constant is dδs′/dxs = −γsλ < 0. In other words, step 2 would
require us to raise δs′ .

In this construction, when we change xs = 1 in step 1 to x̃s = 1− ε in step 2, the total
delay changes by

−(dδs′/dxs + dδs/dxs)ε > 0.

Moreover, since xT > 0 in step 1, we have x̃T > 0 in step 2 by choosing ε to be small.
Therefore, it is a best response for the uninformed player to persist throughout in the
modified mechanism. Finally, by construction, U1(γ1) remains unchanged by our lo-
calized variation method. Lemma 1 then implies that V1(γ1) is increased. The original
mechanism cannot be optimal.

Proof of Proposition 2. Suppose to the contrary that γT < γ∗. Let t(r) be the last active
round. There are two cases: (i) γt(r) ≤ γ∗; or (ii) γt(r) > γ∗. By assumption, there exists
another active round t(r− 1) before round t(r).

Take case (i) first. We consider the following modification to the original mechanism:

1. Change σt(r) in such a way to make the uninformed just indifferent between persist-
ing and conceding at x̃t(r) = 1. This is achieved by setting σ̃t(r) = γt(r)λ.

2. Change σt(r−1) in such a way to keep the continuation payoff for the uninformed in
round t(r − 1) fixed. This can be achieved by setting σ̃t(r−1) = σt(r−1) − γt(r)(1−
xt(r))λ.

With step 1, the new equilibrium belief after round t(r) is given by γ̃t(r)+1 = . . . =
γ̃T = γt(r). Note that the requisite delay σ̃t(r) can always be obtained by adding “extra
rounds” between t(r) and t(r) + 1 if necessary. Therefore step 1 of the construction is
feasible.
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From the indifference condition in round t(r− 1) under the original mechanism,

σt(r−1) =
γt(r−1)λ

γt(r−1)xt(r−1) + 1− γt(r−1)
− γt(r)xt(r)λ > γt(r)(1− xt(r))λ.

Thus σ̃t(r−1) > 0, which means that step 2 is feasible.

Since the uninformed persists through rounds t(r − 1), . . . , T − 1 and concedes in
round T (because γ̃T = γt(r) < γ∗) in the equilibrium of the modified mechanism, the
payoff to the informed in round t(r− 1) is

Ṽt(r−1)(γt(r−1)) = 1− xt(r−1)

(
σ̃t(r−1) + σ̃t(r)

)
.

His payoff under the original mechanism is

Vt(r−1)(γt(r−1)) = 1− xt(r−1)

(
σt(r−1) + xt(r)σt(r)

)
.

Thus,
Ṽt(r−1)(γt(r−1))−Vt(r−1)(γt(r−1)) = xt(r−1)xt(r)

(
σt(r) − γt(r)λ

)
.

From the indifference condition for the uninformed player in round t(r) under the origi-
nal mechanism,

xt(r) =
γt(r)λ− (1− γt(r))σt(r)

γt(r)σt(r)
.

Thus, xt(r) < 1 implies σt(r) > γt(r)λ. We conclude that

Ṽt(r−1)(γt(r−1)) > Vt(r−1)(γt(r−1)).

Next, consider case (ii). Suppose we modify the mechanism so that the game ends
with deadline belief γ̃T instead of γT, where γ̃T ∈ [g(γt(r)), γ∗]. This is achieved by:

1. Change σt(r) to induce equilibrium x̃t(r) that satisfies

γ̃T

1− γ̃T
=

γt(r)

1− γt(r)
x̃t(r).

2. Change σt(r−1) in such a way to keep the continuation payoff for the uninformed
in round t(r − 1) fixed. This is achieved by setting σ̃t(r−1) = σt(r−1) − γt(r)(x̃t(r) −
xt(r))λ.

Using the fact that UT(γ̃T) = 1− γ̃Tλ, the indifference condition in round t(r) gives
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the requisite amount of effective delay in step 1 of the construction:

σ̃t(r) =
γt(r)λ

γt(r) x̃t(r) + 1− γt(r)
.

Note also that this equation implies x̃t(r)σ̃t(r) = γ̃Tλ.

We have already shown in the analysis of case (i) that σt(r−1) > γt(r)(1− xt(r))λ. This
implies that σ̃t(r−1) > 0 for case (ii) as well. Therefore, step 2 of our modification is
feasible.

The change in payoff to the informed, Ṽt(r−1)(γt(r−1))−Vt(r−1)(γt(r−1)), is:

xt(r−1)

(
σt(r−1) + xt(r)σt(r)

)
− xt(r−1)

(
σ̃t(r−1) + x̃t(r)σ̃t(r)

)
= xt(r−1)

(
γt(r)(x̃t(r) − xt(r))λ + γTλ− γ̃Tλ

)
= xt(r−1) (h(γ̃T)− h(γT)) λ,

where h(γ) ≡ γ(γ− γt(r))/(1− γ). Since h(γ̃T) is convex, it reaches a maximum when
γ̃T is either γ∗ or g(γt(r)). Evaluating the value of the function at these two points, we
obtain:

h(γ∗)− h(g(γt(r))) = (γ∗ − g(γt(r)))
λ

λ + ∆
> 0.

Since h(γ̃T) reaches a maximum at γ∗ for any γ̃T in the interval [g(γt(r)), γ∗], and since
γT also belongs to that interval, we have h(γ∗) > h(γT). We conclude that when γ̃T is
chosen to be equal to γ∗,

Ṽt(r−1)(γt(r−1)) > Vt(r−1)(γt(r−1)).

In both cases (i) and (ii), the modified mechanism does not change the uninformed
player’s strategy in rounds 1 through t(r − 1). Thus U1(γ1) is not affected by the mod-
ification. But since Ṽt(r−1)(γt(r−1)) is increased, an induction argument back to round 1
shows that Ṽ1(γ1) is increased by the modification. The original mechanism cannot be
optimal.

Proof of Lemma 3. From the indifference condition in round t(i), we have

σt(i) =
γt(i)(1− xt(i)xt(i+1))λ

1− γt(i) + γt(i)xt(i)
.
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We can use Bayes’ rule to express this in terms of the beliefs (and set t(i + 2) = T when
i = r− 1)

σt(i) =
(γt(i) − γt(i+2))(1− γt(i+1))λ

(1− γt(i))(1− γt(i+2))
.

Likewise the indifference condition in round t(i + 1) is

σt(i+1) =
γt(i)xt(i)λ

1− γt(i) + γt(i)xt(i)xt(i+1)
+

γt(i)xt(i)xt(i+1)

1− γt(i) + γt(i)xt(i)xt(i+1)
+ Ut(i+2)(γt(i+2))− 1.

For fixed γt(i) and γt(i+2), we can use Bayes’ rule repeatedly to transform to obtain:

σt(i+1) =
γt(i+1)(1− γt(i+2))λ

1− γt(i+1)
+ constant.

Finally, to keep γt(i) fixed, we need to adjust σt(i−1) to make sure that the continuation
value Ut(i)(γt(i))− σt(i−1) is held constant. This implies that

σt(i−1) = −γt(i)xt(i)λ + constant = −
γt(i+1)(1− γt(i))λ

1− γt(i+1)
+ constant.

Summing up the three terms, we obtain

t(i+1)

∑
t=t(i−1)

σt =
(γt(i) − γt(i+2))

1− γt(i+2)

(
1− γt(i+1)

1− γt(i)
+

1− γt(i+2)

1− γt(i+1)

)
λ + constant.

This is a convex function of γt(i+1), so it attains the maximum at a boundary of the feasible
set. If there is slack in both round t(i) and round t(i + 1), then γt(i+1) is in the interior of
the feasible set. This mechanism cannot be optimal.

Proof of Lemma 4. In the two mechanisms both γt(i) and the posterior belief after active
round t(i + 1), γt(i+2), are the same. From the proof of Lemma 3, we can evaluate the total

delay ∑
t(i+1)
t=t(i−1) σt at the point γt(i+1) = g−1(γt(i+2)) (i.e., no slack in round t(i + 1)) and

the point γt(i+1) = g(γt(i)) (i.e., no slack in round t(i)). They give exactly the same value
of

t(i+1)

∑
t=t(i−1)

σt =
λ + ∆

λ
+

1− γt(i+2)

1− γt(i)

λ

λ + ∆
+ constant.

The two mechanisms are payoff-equivalent.
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Proof of Lemma 5. Using the payoff from concession in round t(2) to write the payoff to
the uninformed player, the indifference condition in round 1 can be written as

γ1(1− x1xt(2))λ = (1− γ1 + γ1x1)σ1.

Given our construction, γ1 and x1xt(2) are both fixed. Therefore,

dσ1

dx1
= −

γ2
1(1− x1xt(2))λ

(1− γ1 + γ1x1)2 < 0.

Lowering x1 thus requires raising σ1. Since there is slack in round 1, raising σ1 is feasible.

Similarly, the indifference condition in round t(2) can be written as

γ1x1λ + γ1x1xt(2)λ = (1− γ1 + γ1x1xt2)(σt(2) + 1−Ut(2)(γt(2))).

In the above equation, the values of γ1, x1xt(2), and Ut(2)(γt(2)) are held constant. There-
fore,

dσt(2)

dx1
=

γ1λ

1− γ1 + γ1x1xt(2)
> 0.

This means that to lower x1 requires lowering σt(2). Since σt(2) > 0 in the original mecha-
nism, this step is also feasible.

The effect of this modification on the payoff to the uninformed is

dU1(γ1)

dx1
= −γ1λ < 0.

Thus, lowering x1 (while holding x1xt(2) constant) increases the payoff to the uninformed.

Since γT = γ∗ in both the original and the modified mechanism, persisting throughout
the game is a best response to the equilibrium strategy of the uninformed. Therefore
equation (8) holds. The effect of a change in x1 (while holding x1xt(2) constant) on the
payoff of the informed can be calculated by:

dV1(γ1)

dx1
=

1
γ1

dU1(γ1)

dx1
+

1− γ1

γ1

(
dσ1

dx1
+

dσt(2)

dx1

)
=

1− γ1

γ1

dσ1

dx1
+

(
−1 +

1− γ1

1− γ1 + γ1x1xt(2)

)
λ < 0.

Hence, both the informed and the uninformed can be made better off.
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Proof of Proposition 4. Fix any γ1 ∈ (γ∗, (λ + ∆)/(2λ)). In the one-round delay mech-
anism with maximum delay, the probability that the uninformed player persists is given
by

x1 =
γ1λ− (1− γ1)(λ + ∆)

γ1∆
,

which is strictly less than 1 because γ1 < (λ + ∆)/(2λ). The expected payoff is

U1 = 1− γ1λ− γx1λ

for the uninformed, and
V1 = 1− x1(λ + ∆)

for the informed.

By (7), the difference between the ex ante payoff W1 and the coin-flip payoff 1− λ can
be shown to have the same sign as

2γ1λ∆
1− γ1

−
(

γ1λ

1− γ1
+ (λ + ∆)

)(
γ1λ

1− γ1
− (λ + ∆)

)
.

It is straightforward to verify that the above expression is positive at

γ1 = g−1(1/2) =
λ + 2∆

2(λ + ∆)
.

Furthermore, we can show that the above expression is decreasing in γ1 for all γ1 >

γ∗. Therefore, the ex ante payoff W1 under the one-round delay mechanism with max-
imum delay ∆ is strictly greater than the payoff of 1− λ from the coin flip for all γ1 ∈(
γ∗, g−1(1/2)

)
.

Next, fix any γ1 ∈ (γ∗, g−1(γ∗)). Note that g−1(γ∗) ∈
(

g−1(1/2), (λ + ∆)/(2λ)
)
.

First, we compare the ex ante payoff W1(γ1) under the mechanism given in case (b) of
Main Result with W1 under the one-round delay mechanism with maximum delay de-
rived above. Under the mechanism given in case (b) of Main Result, the expected payoff
is given by:

U1(γ1) = 1− γ1λ− γ1χ(γ1)λ

for the uninformed, and
V1(γ1) = 1− g(γ1)λ

for the informed. By (7), the difference between W1(γ1) and W1 under the one-round
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mechanism with maximum delay can be shown to have the same sign as

(λ + ∆)2
(

γ1λ

1− γ1
− (λ + ∆)

)
− γ1λ

1− γ1

(
(2λ + ∆) +

γ1λ

1− γ1

)(
(λ + 2∆)− γ1λ

1− γ1

)
.

The above expression is negative at γ1 = γ∗, positive at γ1 = g−1(1/2), and increasing
in γ1 for all γ1 > γ∗. It follows that there exists a unique γ ∈

(
γ∗, g−1(1/2)

)
such that

the one-round delay mechanism with maximum delay dominates the mechanism given
in case (b) of Main Result if and only if γ1 < γ. Second, we compare the ex ante payoff
W1(γ1) with the coin-flip payoff of 1− λ. The difference between W1(γ1) and 1− λ can
be shown to have the same sign as

2λ(λ + ∆)(1− γ1)− (λ + (1− γ1)(λ + ∆))(γ1λ− (1− γ1)∆).

The above expression is strictly increasing in γ1. Further, at γ1 = g−1(γ∗), we show below
that the difference W1(γ1)− (1− λ) is positive if and only if ∆ < (

√
2− 1)λ.

Finally, fix any γ1 ∈ (g−1(γ∗), 1). Using the expressions (13) for U1(γ1) and V1(γ1)

from (8), we obtain from (7) that

W1(γ1)− (1− λ) =
1

γ1(2− γ1)

(
(1− γ1)

2
T

∑
t=1

δt − (2γ1 − 1)λ +
λ∆

λ + ∆

)
.

The derivative with respect to γ1 of the terms in the bracket on the right-hand-side of the
above equation is given by

(1− γ1)
2 d

dγ1

(
T

∑
t=1

δt

)
− 2(1− γ1)

T

∑
t=1

δt − 2λ.

Using (12) and the definition of r∗ from (3), we have

d
dγ1

(
T

∑
t=1

δt

)
=

λ

η2
dη

dγ1
+ λ <

2− γ1

1− γ1
λ,

as η > 1. Thus, the difference W1(γ1)− (1− λ) can cross zero only once and from above.
As γ1 approaches 1, we have W1(γ1)− (1− λ) < 0. At γ1 = g−1(γ∗), using (12) we have
that

W1(g−1(γ∗))− (1− λ) =
λ2(λ2 − (2λ + ∆)∆)

(2λ + ∆)(3λ2 + 3λ∆ + ∆2)
,

which is positive if and only if ∆ < (
√

2− 1)λ. The proposition follows immediately.
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Proof of Lemma 6. Fix an infinite mechanism {δt}∞
t=1 and suppose that it is not effec-

tively finite. This is equivalent to assuming that there exists an equilibrium in which the
uninformed player persists with strictly positive probability in every round (i.e., xt > 0
for all t).

First, we claim that there is no equilibrium in which the probability that the informed
player persists in round t, yt, equals 0 for some t. To see this, note that in any such
equilibrium xt > 0. From the optimality of the uninformed player persisting in round t
we have that

1− λ− γtxtλ ≤ 1− 2(1− γt)λ− γtxt(1 + δt −Ut+1),

where Ut+1 is the uninformed continuation equilibrium payoff. Because the informed
can always persist and then mimic the equilibrium behavior of the uninformed, from the
optimality of the informed conceding we have

1− λ− xtλ ≥ 1− xt(1 + δt −Ut+1).

Combining the two inequalities, we have

xt(1 + δt − λ−Ut+1) ≥ 2λ,

which is not possible because by assumption δt ≤ ∆ < λ and Ut+1 is bounded from below
by 1− 2λ.

Second, we claim that in any equilibrium in which both xt and yt are strictly positive
for all t, the equilibrium payoff Vt to the informed is at least as large as the equilibrium
payoff Ut to the uninformed for all t. To see this, note that by assumption both Ut and
Vt are equal to the expected payoff from the strategy of persisting in round t and in each
succeeding round. For the uninformed this gives

Ut = γt

(
1−E

[
N−1

∑
s=t

δs

∣∣∣∣∣{xs}s≥t

])
+ (1− γt)

(
1− 2λ−E

[
N−1

∑
s=t

δs

∣∣∣∣∣{ys}s≥t

])
,

where N is the terminal round when the game ends, which has an unbounded support,
and the expectation is taken with respect to the distribution of N when faced with an
opponent with a continuation strategy {xs}s≥t and {ys}s≥t respectively. Note that both
expectations exist by the assumption that ({xs}, {ys})s≥t is an equilibrium strategy pro-
file. From the strategy of the informed player to persist in each round starting in round t,
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we have

Vt = 1−E

[
N−1

∑
s=t

δs

∣∣∣∣∣{xs}s≥t

]
.

By conceding at time t the uninformed can always obtain a payoff at least as large as
1 − 2λ, so optimality of the equilibrium strategy requires that Ut ≥ 1 − 2λ. Since the
second term in the expression for Ut above is no larger than 1− 2λ while the first term is
a fraction of Vt, we have Vt ≥ Ut.

Third, we claim that yt = 1 for all t. To prove the claim we show that whenever the
uninformed weakly prefers persisting to conceding, the informed strictly prefers persist-
ing. Let γt be the belief of the uninformed player. For the uninformed player to weakly
prefers persisting to conceding, we must have

γt (1− xt + xt(−δt + Ut+1)) + (1− γt) ((1− yt)(1− 2λ) + yt(−δt + Ut+1))

≥ γt ((1− xt)(1− λ) + xt(1− 2λ)) + (1− γt) ((1− yt)(1− λ) + yt) .

Since
(1− yt)(1− 2λ) + yt(−δt + Ut+1) < (1− yt)(1− λ) + yt

for all yt, we have

1− xt + xt(−δt + Ut+1) > (1− xt)(1− λ) + xt(1− 2λ).

By the previous claim we know that Ut+1 ≤ Vt+1, hence

1− xt + xt(−δt + Vt+1) > (1− xt)(1− λ) + xt(1− 2λ),

implying that the informed player strictly prefers persisting to conceding in round t re-
gardless of xt.

Finally, we claim that xt = 0 for some t, which establishes the lemma. By the second
claim above, there is τ such that yt = 1 for all t ≥ τ. The equilibrium belief γt of the
uninformed player decreases in t for t ≥ τ and is bounded from below by 0. Since the
delay mechanism is not effectively finite, γt converges and always persisting is optimal
for the uninformed at any t. If the limit of γt is strictly positive, from Bayes’ rule we have
limn→∞ ∏τ+n

t=τ xt > 0, which implies that limn→∞ ∏τ+n
t=τ′ xt can be made arbitrarily close to

1 by taking τ′ > τ and sufficiently large. However, in round τ′, always persisting results
in no alternative being implemented with probability close to 1 and yields a payoff to the
informed strictly lower that the payoff from implementing any alternative, contradicting
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the equilibrium condition. If γt converges to zero instead, then for t large enough the
expected payoff to the uninformed from conceding is close to the first best payoff of 1
while the strategy of persisting from t onward leads to no alternative being implemented
with probability close to 1, again contradicting the equilibrium condition.

Proof of Proposition 5. Consider first a finite delay mechanism and an equilibrium that
ends with probability 1 in the deadline round T. In this case, we write the continuation
payoffs for the uninformed and the informed player after the last delay δT and before a
coin flip as UT+1 = VT+1 = 1− λ.

Next, consider any finite delay mechanism that has an equilibrium ending with prob-
ability 1 in some round N before the deadline round T, or any infinite mechanism, which
by Lemma 6 can only have equilibria where the game ends with probability 1 in some
round N. Since the the game ends with probability 1 in round N, in any such equilib-
rium the uninformed player concedes, with xN = 0, and because the game does not end
with probability 1 before N, xt > 0 for each t < N. Given this, in such equilibrium the
informed player persists, with yN = 1. It follows that in this case the payoffs are

UN = 1− γNλ ≤ VN = 1,

regardless of the belief γN of the uninformed player.

Now, suppose that Ut+1 ≤ Vt+1 for some t ≤ min{T, N}, we know from the proof of
Lemma 6 that if the uninformed player weakly prefers persisting to conceding in round t
then the informed player strictly prefers persisting to conceding. Since xt > 0 and yt = 1,
the expected payoffs for the uninformed and informed player in round t are

Ut = γt(1− xt + xt(−δt + Ut+1)) + (1− γt)(−δt + Ut+1);

Vt = 1− xt + xt(−δt + Vt+1).

It is straightforward to use the above expressions, and the assumption that Ut+1 ≤ Vt+1

to verify that Ut ≤ Vt. The proposition follows immediately from induction.
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