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1Usually transformations of annual income or consumption measures are used as proxies
for lifetime wealth in order to make statements regarding the progress of welfare, inequality and
poverty for example.
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Introduction

       In August 2005 the United Nations Development Program along with others sponsored a

conference on “The Many Dimensions of Poverty” highlighting the many circumstances in which

the appropriate comparison instruments for evaluating welfare, inequality and poverty are several

in number. The general (and diverse) functionings and capabilities approach of Sen (1995) and

the lifetime wealth approach of Atkinson (1983) are two obvious examples. The Atkinson (1983)

example depends not only on an agent’s income stream, but also her life span, the rate at which

she discounts happiness through time and the rate at which income may be exchanged through

time. Unfortunately, since the appropriate aggregating function of these many instruments (and in

the case of poverty comparisons the appropriate function that defines the poverty frontier across

the space of instruments) is not directly known or observable, recourse is usually made to

unidimensional comparison tests or indices1of some of the constituent parts individually. Much

may be lost in ignoring the multidimensional nature of the issue (by abstracting from the time

discounting and life expectancy aspects of lifetime economic wealth for example) and the

progress of the welfare, inequality and poverty may be misconstrued as a consequence.

        The two basic empirical approaches to making univariate welfare comparisons are through 

comparing indices and comparing distributions through stochastic dominance tests. Typically

indices, such as the Gini coefficient for example, permit a complete ordering of states but can be

ambiguous (when Lorenz curves cross it is not clear what differences in the corresponding Gini

coefficients represent in welfare terms). Furthermore the statistical distribution of most indices is

unknown precluding the possibility of determining whether an ordering is “significant” or just a

statistical artifact due to sampling variation. On the other hand dominance tests, based on the

examination of dominance orderings, usually provide incomplete orderings but when they are

established they are unambiguous and they have well defined statistical properties.



2  Multivariate welfare indices already exist (see Tsui(1995), Maasoumi(1993) and
Koshevoy and Mosler (1997) for example), however, though straightforward to implement,
sample weighted versions of these indices have not generally been employed.
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       Stochastic Dominance tests are of particular import for poverty analysis since, as Atkinson

(1987) and Foster and Shorrocks (1988) indicate, establishing a dominance relationship between

two distributions over a particular range implies an unequivocal change in poverty as measured

by all poverty indices within a given class for all potential poverty lines in that range. This is a

profoundly liberating result, to a large extent it removes from the arena debates about which

poverty line and which poverty index to use and allows attention to be focused upon whether or

not poverty has increased or diminished. It transpires that multivariate dominance extensions

permit similar assertions for multivariate poverty measures (Duclos, Sahn and Younger (2001)).

For poverty analysts this is all the more liberating since now the very tricky problem of defining a

poverty frontier (or defining what the various trade-offs between different goods at the poverty

boundary would be) can be avoided.

       A further issue with both indices and tests is how the sample points are weighted, this has

much to do with exactly whose welfare is it that is being represented, but typically little attention

has been paid to this issue. As a consequence when welfare across countries is being aggregated

or compared the same weight is attached to the per capita GDP of China as that of Ireland in the

same way that households with different membership sizes are attached the same weight in un-

weighted household studies.

         This paper introduces and employs sample weighted multidimensional extensions to

existing stochastic dominance comparison techniques to examine whether or not ignoring

multidimensional and sample weighting aspects result in misleading inferences2. The techniques

are employed in the context of a sample of nations, in essence each country in the sample is

represented by an agent characterized by the per capita GNP of that country, the GNP growth rate

of that country and the average life expectancy in that country. In essence the inequality that is

being examined is that between the representative agents in these countries, intra country



3See however Anderson (2001).
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inequality is not being measured.  Since the welfare of all individuals in the world is at issue each

country’s representative agent should be weighted by the population she represents. Tests for the

comparison of multidimensional distributions in small samples are introduced in section 1 and

Section 2 outlines the theoretical basis for multidimensional comparisons in the application.

Section 3 reports the results and some conclusions are drawn in section 4. The results suggest

that multidimensional techniques lead to substantially different conclusions from those drawn

from the use of unidimensional measures and that sample weighting also has a profound effect on

the empirical outcomes.

1. Welfare, Inequality and Poverty Tests for Multivariate Distributions with limited sample

sizes.

       Multidimensional Inequality Indices refer to particular features of the multivariate

distribution of characteristics of interest, tests for differences in these distributions would be

useful in establishing whether trends in the indices reflect significant changes in the underlying

distributions. In the univariate domain, omnibus tests for distributional differences come in two

flavours, tests which compare differences between two functions at a sequence of points (like

Pearson Goodness of Fit tests) and tests which examine the maximum distance between two

functions (like Kolmogorov - Smirnov tests). Rao (1973) for example discusses the two tests.

Anderson (2001a) provides a Monte-Carlo based comparison of the two techniques suggesting,

amongst other things, superior properties for the latter in detecting location differences and

superior properties for the former in detecting scale differences. Generally the choice between the

two tests is informed by arguments a) that the former test is potentially inconsistent whereas the

latter is not3 (Barrett and Donald(2003)) and b) that the former test is more informative than the

latter in highlighting where in the distribution discrepancies occur (Rao(1973)). More specific

unidimensional inequality tests relating to Lorenz, Generalized Lorenz, Stochastic and

Polarization Dominance of various orders have been provided in Beach and Davidson (1983),



4This issue will always present problems for multidimensional extensions whenever two
surfaces are compared using many points of comparison and the number of points of comparison 
increases with the order of dimensionality such as for example the techniques proposed in Beach
and Davidson (1983), Davidson and Duclos (1997) (2000).
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Anderson (1996)(2004)(2004a), Andrews (1997), Davidson and Duclos (1997) (2001), Formby

et. al. (2000), Linton et. al. (2002), McFadden(1989), Barrett and Donald(2003). 

       Crawford (1999) and Ibbott (2004) extend analogues of the Pearson Goodness of Fit test to

the multivariate domain in introducing techniques for making statistical multidimensional

stochastic dominance comparisons following the work of Atkinson and Bourguignon (1982).

They partition the support of the joint density into many cells and, having estimated the

probability of falling in each cell, estimate the relevant cumulative joint and marginal

distributions via appropriate aggregation matrices. Unfortunately a curse of dimensionality

problem arises since, for precision and power reasons in estimating cell probabilities, it is

recommended that partitions should be chosen to ensure a sufficient number of observations (c)

are expected to fall into each cell (see Boero et. al. (2004) for a discussion). Since each

dimension requires several cells4 (say r), the demands on the sample size are of the order crK

where K is the number of dimensions.

        The Kolmogorov -Smirnov Two Sample Statistic does not suffer this problem since it does

not depend upon cell probability calculations. It is readily extended to the multi-variate

population weighted framework by using an empirical distribution function Fn((x,X,z) defined

as:

where (x is a vector of population weights (i , X is an n x K matrix of stacked vectors xi i=1,..,n

corresponding to the sample of vectors of K characteristics, z is a vector of the same dimension



5The exact distribution of D is known for K=1 and sample sizes smaller than those in the
present application (see Kim and Jenrich (1973)).
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as xi,  I( ) is a standard indicator function and  “# ” corresponds to a vector inequality

relationship. Defining Gm ((y,Y,z) in a similar fashion and letting n* = nm/(n+m), inference can

be carried out using D = max z (Fn((x, X,z)-Gm((y, Y,z)) or Da  =  maxz |Fn((x, X,z)-Gm((y, Y,z)|.

The latter is used to examine unspecified differences in distributions, the former can be used to

explore a first order stochastic dominance relationship between F and G by considering D and

DR=max z (-Fn(X,z)+Gm(Y,z)). Distribution G first order dominates F when F(x1, x2, .., xK) $

G(x1, x2, .., xK) for all possible (x1, x2, .., xK) with strict inequality holding for some (x1, x2, .., xK).

Thus D being in the rejection region and DR not being in the rejection region constitutes

evidence of first order dominance of G over F.

       For situations where K = 1 and the xi’s are independent drawings with weights (i from f( )

(and similarly for (j’s) the asymptotic distribution of D and Da in large samples5 under a null of

identical distributions is given by:

rendering testing non parametric since these distributions are independent of  F. In the case of  D

the distribution is particularly simple coming from the family of Rayleigh distributions with scale

parameter 0.5 (essentially the underlying random variable would be the positive square root of a

P2(2) random times 0.5).

      Unfortunately in the present circumstances K > 1 and, since a panel of 135 countries over six

observation years is being used, it is extremely unlikely that the sample of x’s will be



6These results are available from the author on request. The intuition behind this is that
positively correlated paired elements in the samples would be closer together than if they were
independent, reducing the chance of observing large differences in the respective empirical
cumulative distribution functions at given points.
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independent of the sample of y’s. In both cases the distribution of D and Da is not known

(recently Linton et al (2002) have attacked the within and between sample dependence issue in

K-S tests via a sub-sampling approach). Most of the theory on D and Da has been worked out for

the one sample Kolmogorov - Smirnov Test (where G( ) in the above becomes a theoretical

rather than empirical distribution function) and extended to D by invoking Glivenko-Cantelli

theorems on the convergence of empirical G to theoretical G asymptotically. Dvoretsky, Kiefer

and Wolfowitz (1956) established a probability bound for D in the one sample case when K = 1

and the realizations are i.i.d, the bound is of the form:

      Kiefer and Wolfowitz (1958) established the existence of a distribution function for the D’s

when K > 1 but found that generally it depended upon F. Kiefer(1961) revisited the bounds issue

for situations where K > 1 and established a bound of the form:

interestingly he observes that C(,,K) < C suggesting that estimates of P(%nD > d) for the

univariate case would provide conservative (i.e. larger) estimates of the true values when K > 1.

Preliminary simulation studies support this view and suggest that positive correlation between x

and y samples has a similar shrinking effect on the distribution of D. Indeed the simulation

evidence for positive correlation between the samples is even stronger suggesting that the

distribution of D remains in the Rayleigh class and simply reduces the scale parameter6.

      In studying relative inequality in terms of the multi-variate distributions of characteristics
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consider the following multi-variate inequality indices. Suppose that sampling is stratified and

that a population contains N agent types (note that this is distinct from n, the number of agents in

the sample) with weights (i, i= 1,..,N where the population weights are such that:

A population weighted version of the Tsui multivariate inequality index would take the form:

where the rk are characteristic weights chosen by the investigator and :k is the mean of

characteristic k (a similar equation for the Maassoumi (1993) index may be derived). Alternatively

the class of Polarization indices proposed in Esteban and Ray (1994) can be extended to many

dimensions incorporating a population weighted version of the Koshevoy and Mosler (1997)

multi-variate Gini coefficient so that POLW, a multivariate version of the Esteban and Ray (1994)

polarization index with a polarization parameter 2, may be written as:

For the pure Koshevoy and Mosler (1997) multi-variate Gini coefficient, 2 is set to 0 and (i = 1

for all i. For a polarization index 2 is set to some number between 0 and 1.6 (Esteban and Ray

(1994)) and indicates the degree of polarization reflected in the index (2 = 0 corresponds to a

standard sample weighted multivariate Gini). Note that if all agents are equally represented,

different values of 2 will have no effect and the polarization index reduces to a Gini coefficient.

      The important point to observe is that in both of these indices the mean standardized

quantities wjk = xjk / :k for j=1,.., n k=1,..,K are instrumental and appear in some form. It is their



7 This is easily demonstrated for uni-variate distributions f(w) and g(w) confined to the
positive orthant since:

For the last equality to hold G(w) $ F(w) for all 0 # w with strict equality for some w cannot
hold and similarly neither can F(w) $ G(w) for all 0# w with strict equality for some w.
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joint distribution that governs the behavior of relative inequality indices and in what follows

f(w1,w2,..,wk) and g(w1,w2,..,wk) will refer to the appropriately transformed distributions. By

definition such distributions will not suffer period to period mean location shifts since the

expected values of each of their arguments is always the unit vector and a strict first order

dominance relation will never exist7. Univariate techniques for studying stochastic dominance in

these circumstances have been developed (Formby et. al. (2000)) but again  under extension to

multi-dimensional environments they suffer the curse of dimensionality problem alluded to

earlier. What is relevant for inequality comparisons like “f( ) is more equal than g( )” is that the

terms Jk wjk  are in some sense closer to 1 under f( ) than under g( ). If there is a significant

change in the degree of inequality reflected in the difference between f( ) and g( ), Da can be

expected to be significant but it will not indicate the direction of change in inequality. Similarly

both D and DR can be expected to be in the rejection region ruling out 1st order dominance in any

direction.

      The issue of greater equality under f( ) than g( ) is studied by partitioning the sample space and

considering the inequalities for the distributions of the mean standardized variates:



8 At first sight it may seem sensible to consider only outcome vectors satisfying w*i #1
for i=1,..,K (which are on one side of the partition) and outcomes satisfying w*i $1 for i=1,..,K
(which are on the other) but to have included only such vectors in the calculus would have ruled
out a proportion of the sample space that increases with K, (for independent symmetrically
distributed characteristics the proportion of observations that satisfy either of the two conditions
is on average (0.5)K-1 for example).
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where strict inequality on the integral conditions holds at least somewhere. Here a partition

function has been chosen which exhausts the outcome space and includes the unit vector on the

boundary, (all w* such that 3w*i  < K could just as well have been chosen as a locus to partition

the sample space). The idea is to partition the sample space into two regions, one containing

vectors which in some sense are above average across characteristics, the other containing vectors

that are below8. Satisfying this condition essentially confirms that the multivariate distribution of

w is more dense around the unit vector under f( ) than under g( ). By considering the

transformation z = -w, where f-(z) and g-(z) are the appropriate transformations of f(w) and g(w), 

the second condition may be written as:

which, when taken with the first condition, can be seen to be equivalent to two 1st order stochastic

dominance relationships over limited ranges of the relevant distributions which can be examined

using the unidirectional versions (D and DR) of the Kolmogorov-Smirnov test outlined above in

each case.

2. An Application: Lifetime Utility and Wealth Comparisons.

       In unidimensional empirical welfare and inequality comparisons the choice as to which

instrument to use depends upon the balance of the arguments for income (that it is more

accurately measured) and for consumption (that more adequately reflects an agent’s welfare via

the consumption smoothing property associated with the permanent income hypothesis see
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Modigliani and Brumberg (1954), Friedman (1957)). The consumption smoothing property

emerges from an agent’s solution to maximizing lifetime utility constrained by their lifetime

income (see Browning and Lusardi(1996)). The formulation most favored by researchers assumes

a constant relative risk aversion form of an instantaneous utility function (which itself remains

unchanged over time) together with the conditions necessary for income smoothing and yields a

consumption process of the form:

where the long run consumption growth rate g* (which is equal to the long run interest rate under

Phelps’ (1961) golden rule), the rate of time preference r* and the coefficient of relative risk

aversion ., imply an incremental consumption augmenting rate of g = (g* - r*)/.. 

      A more appropriate instrument for welfare, inequality and poverty comparisons is an agent’s

lifetime wealth or happiness (Atkinson (1983)).  Given a life length T, no bequests and an initial

consumption level C, lifetime wealth W at t = 0 may be written as:

In a similar fashion, by employing an instantaneous indirect utility function specification that

underlays  Working - Leser type Engel curves (utility is linear in the logarithm of consumption)

with constant relative prices and time preference discount rates and recalling that g = (g* - r*)/.,

an expression for lifetime utility may be obtained as:

Thus with constant long run interest rates and life expectancy across agents, welfare may be
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reasonably approximated by a linear function of the logarithm of consumption. Since r*, . and

hence g are fundamentally unobservable neither W or U can be calculated (if they could univariate

dominance comparisons could be performed directly). However assuming r* and . are constant

and the same for all agents, we can examine the welfare, inequality and poverty implications of

changes in W or U by assessing the nature of changes in the joint distribution of their constituent

components g, T and C. In particular we are interested in the conditions on two joint distributions 

f(g, T , C ) and g(g, T, C)) which ensure that either Ef(W)-Eg(W) > 0 or Ef(U)-Eg(U) > 0. 

       Extending Atkinson and Bourguignon (1982) to the three variable case (where for

convenience all of the variables lie in the positive orthant with upper bounds ai, i=1,2,3

respectively and Wi = MW/Mxi, Wij = M2W/MxiMxj and Wijk=M
3W/MxiMxjMxk) and letting  ªf(x1, x2, x3)

= f(x1, x2, x3) - g(x1, x2, x3) and  ªF(x1, x2, x3) = F(x1, x2, x3) - G(x1, x2, x3)),  successive integration

by parts yields ÎE(W) (a similar expression can be derived for ÎE(U)) as:

      The first term in this sum is 0 by definition, thus for objective functions in the class Wi $ 0,

i=1,2,3, Wij # 0 i,j = 1,2,3 and W123 $ 0 a sufficient condition for the expected value of the change

in objective function to be no lower than 0 is:
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For objective functions in the class Wi $ 0, i=1,2,3, Wij $ 0 i,j = 1,2,3 and W123 $ 0 (which

correspond to the preferences of a risk loving agent in portfolio analysis)  a sufficient condition

for the expected value of the change in the objective function to be no lower than 0 may be

derived by employing the counter cdf  F(x1,x2,x3) = P((X1>x1)1(X2>x2)1(X3>x3)). Since the joint

density may be written as:

successive integration by parts yields a corresponding expression for ÎE(W) of the form:

Noting that all partials of the first three orders are non negative this will be non-negative if

F(x1,x2,x3) $0 for all x1, x2, and x3. Noting that:



9 This argument was kindly pointed out to me by a referee.
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this condition may be written in terms of the cdf’s as.

where K( ) is the linear combination of “F” functions and J( ) is the corresponding linear

combination of “G” functions. It may be seen that K(x1,x2,x3) = 1-F(x1,x2,x3) and similarly

J(x1,x2,x3) = 1-G(x1,x2,x3)) so that K and J take on values in the unit interval and are increasing in

each of their arguments9 so that the Kolmogorov-Smirnov and other distribution comparison tests

would be applicable.

Note the vector of wealth partials with respect to C, T and g in [1] are respectively:

In terms of orders of magnitude, for a wealth augmenting rate of 1% and an expected lifetime of

60 (roughly the orders of magnitude found in the samples), the partials of W with respect to C, T

and g yield elasticities of 1, 1.33 and 0.33. The matrix of cross partials may be written as:
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and:

all of which are positive for pertinent values of the variables. Similar partials and elasticities with

respect to (a + b lnC), T and g as above (with .g replacing g) can be elicited from [1a] indicating

that condition [2a] is the one to be examined in the present context.

Results.

       Data from the World Bank World Development Indicator series on per capita purchasing

power parity GDP in constant 1995 $US together with Population Size and Life Expectancy were

collected for 135 countries for the years 1987, 1990, 1992, 1995, 1997  and 1999 (Appendix 1

contains a list of countries in the sample). GDP per capita growth rates were calculated as the

annual average over years since the preceding observation. The inequality indices require all

comparator variables to be non-negative, hence growth rates were standardized in each

observation year by deducting the lowest average growth rate in that year from all others so that

the variable may be interpreted as the growth rate differential over the minimum growth rate for

that observation year. Sample weighting was based upon relative population size each year. Table

1 presents summary statistics for the raw data (i.e. growth rates have not yet been standardized).

      Broadly speaking mean lnGDP and median life expectancy grew throughout the period in both

weighted and un-weighted terms (there was a slight diminution of un-weighted lnGDP in 1992

and of  un-weighted life expectancy in 1999). The trend in median lnGDP was somewhat less

categorical, it also fell in 1999. Average and median growth rates increased and then diminished

over the period. The effect of sample weighting is evident in diminished lnGDP and life

expectancy and increased growth rate means, reflecting the increased weight of less developed

countries in the sample. The sample standard deviations, being a crude inequality measure,

provide an interesting perspective of increasing inequality in un-weighted lnGNP and diminishing
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inequality in Weighted lnGNP. Growth rate inequality is all over the map! With respect to life

expectancy, inequality increases in the un-weighted sample whilst the weighted sample exhibits a

“U” shaped profile.

Table 1. Sample Statistics
Means
Year            LnGDP      lnGDP       GDPgrowth    GDPgrowth      Life Expect   Life Expect
                                  (sample                                 (sample                                  (sample 
                                   weighted)                               weighted)                              weighted)

1990            8.3389      8.0357            0.0014            0.0166             63.9751       65.4408

1992            8.3316      8.0851           -0.0037            0.0291             64.3698       65.9142

1995            8.3499      8.1996            0.0061            0.0416             64.6455       66.3759

1997            8.3713      8.2411            0.0107            0.0249             64.9619       66.7446

1999            8.3777      8.2681            0.0032            0.0175             64.7490       66.7853

Medians

1990            8.3856      7.3709            0.0028            0.0169             68.0839       61.7073

1992            8.3623      7.5668            0.0060            0.0101             68.1024       62.7073

1995            8.3938      7.8941            0.0116            0.0215             68.4610       64.1459

1997            8.4193      8.0193            0.0091            0.0149             69.0366       65.1049

1999            8.4118      7.8934            0.0041            0.0116             69.4776       65.7244

Sample Standard Deviations

1990            1.0770      1.0491            0.0372            0.0280             10.8973        7.8862

1992            1.0823      1.0194            0.0586            0.0518             11.1240        7.7998

1995            1.1072      0.9762            0.0447            0.0505             11.3641        7.8112

1997            1.1153      0.9690            0.0473            0.0283             11.6624        8.0017

1999            1.1299      0.9577            0.0460            0.0373             12.4382        8.5735

       Table 2 reports the absolute welfare and poverty implications of the data in table 1 via multi-

variate 1st order stochastic dominance tests employing criteria [2a]. For comparison uni-variate

stochastic dominance tests of the 1st and 2nd orders are reported (both weighted and unweighted).
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In the multi-variate comparison both un-weighted and weighted samples indicate welfare 

Table 2. Multivariate Kolmogorov-Smirnov 1st Order Dominance Test P values*.
Null Hypothesis      90 v 92  90 v 92#  92 v 95  92 v 95#   95 v 97 95 v 97#   97 v 99  97 v 99# 

2nd yr � 1st yr           0.0000   0.0000     0.6588   0.0002      0.8187  0.0002      0.0000  0.0000

1st yr � 2nd yr           0.9780   0.9519     0.0048   0.0000      0.0000  0.0000      0.8860  0.9252

Univariate First order (and second order) Dominance Tests

Per Capita GDP
2nd yr � 1st yr          0.8695    0.9837    0.9737    0.9588     0.9986    0.9970   0.9794    0.9982      
                              (0.3540) (0.5157) (0.5238)  (0.5080)  (0.2478) (0.2265) (0.5144) (0.4901)

1st yr � 2nd yr          0.9870    0.9990    0.9986    0.0000     0.9870   0.9990    0.8540    0.0000
                              (0.0543) (0.1498) (0.2428)  (0.0000)  (0.4248) (0.5016) (0.0963) (0.0000) 

Per Capita GDP Growth
2nd yr � 1st yr         0.4169    0.0000   0.9024     0.7353      0.3034    0.0000     0.0857    0.0492  
                             (0.0011) (0.4952) (0.0000)  (0.0000)   (0.0168) (0.0000)  (0.0043)  (0.0000)

1st yr � 2nd yr         0.0993    0.0000   0.0317     0.0000      0.9997    0.9978     0.9999    0.0014
                             (0.5194) (0.0000) (0.0000)  (0.5003)   (0.5085)  (0.4995)  (0.5177) (0.5139)

Life Expectancy
2nd yr � 1st yr         0.9874    0.9998    0.9911    0.9966      0.9908   0.9997    0.9518     0.9991     
                             (0.5397) (0.4044) (0.5261)  (0.4985)   (0.5386) (0.4926) (0.5396)  (0.5042) 

1st yr � 2nd yr         0.9637    0.9999   0.9453     0.9927       0.9174   0.7195    0.8358    0.9965
                             (0.2047) (0.4948) (0.1737)  (0.1679)    (0.1606) (0.0323) (0.1121)  (0.2638)

*For the Kolmogorov Smirnov Tests the upper tail probabilities reported are conservative
estimates based upon the assumption that the one sided K-S test is Rayliegh distributed with a
scale factor of 0.5. For the univariate tests weighted and un-weighted versions of Anderson
(1996) were used in a Wolak (1989) joint inequality test. 
# Based upon population weighted samples.

improvements (poverty reductions) between 1990 and 1992 and 1997 and 1999 and welfare

deterioration (poverty increases) between 1992 and 1995 and 1995 and 1997 are indicated by the

un-weighted sample but not in the weighted sample (Thus sample weighting can be seen to

profoundly affect the results in these comparison years). This suggests that the multidimensional

comparison is greatly influenced by the growth rate variable which has the largest coefficient of

variation by a considerable margin since it follows the progress of that instrument. Indeed the uni-

variate comparisons suggest that it is the growth rate variable that is driving the results since



10The lack of power in the “tail” directed tests is probably due to the reduction in the
sample size (it is roughly halved) implicit in focusing on the tails. 
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dominance is seldom indicated in the GNP variate (twice) and never in the life expectancy variate.

The multi-variate results are probably also reinforced by the weak performance of lnGDP in 1992

and both lnGDP and life expectancy in 1999 as observed in table 1.        

Attention is now turned to the comparison of the joint distributions of the mean standardized

variables outlined at the end of section 1 as a means of examining multivariate inequality changes. 

Table 3. Multivariate Stochastic Dominance Test P values for the joint distributions of
the mean standardized variables (population weighted results)*.
Comparison                                 1990 v 1992    1992 v 1995    1995 v 1997   1997 v 1999      

Overall
Distrib.           

2nd � 1st          0.0099            0.0000             0.0001           0.0001

1st � 2nd          0.0973            0.9463             0.0877           0.0846

Lower Tail 2nd � 1st          0.8921            0.3028             0.9704           0.3997

1st � 2nd          0.2912            0.9818             0.3550           0.6891

Upper Tail 2nd � 1st          0.2685            0.6401             0.9731           0.1006

1st � 2nd          0.0964            0.0020             0.0841           0.1115

*The upper tail probabilities reported are conservative estimates based upon the assumption
that the one sided K-S test is Rayliegh distributed with a scale factor of 0.5.

       There appears to be stronger evidence of inequality trends in the dominance tests reported in

Table 3. Contrary to expectations, at the 5% level, the general 1st order dominance tests reject

dominance in only one direction whereas the upper and lower tail tests (with the exception of the

92-95 comparison) have to be deemed inconclusive10. However at the 10% level general overall

distribution first order dominance is rejected in both directions for all but the 1992-1995

comparison and in this context upper tail dominance of the first period over the second period is

not rejected whereas the second period’s dominance over the first is indicating decreasing

inequality over the period which is consistent with the general trend in the sample statistics.
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      For comparison Table 4 reports results for the various Multidimensional Inequality Indices

and their unidimensional counterparts (for the purposes of these results the growth rates have been

standardized). The unidimensional inequality indices for lnGDP and Life Expectancy generally 

Table 4. Multidimensional Inequality Indices

Multidimensional Indices

                          GINI        WEIGHTED   POLARIZATION    TSUI       WEIGHTED TSUI

                                                 GINI                   INDEX             INDEX              INDEX

                          MPOL          MPOL                  MPOL            TR1PW             TR1PW

Year                2=0, (i=1         2=0,                       2=1                   (i=1          

1990                  0.1270           0.0938                  1.0679               0.0157                 0.0142 

1992                  0.1107           0.0921                  1.2154               0.0138                 0.0121

1995                  0.1062           0.0999                  1.3251               0.0122                 0.0106

1997                  0.1315           0.0968                  1.2578               0.0167                 0.0150

1999                  0.1178           0.0918                  1.0886               0.0127                 0.0109

Unidimensional Gini (un-weighted and weighted) and Esteban-Ray Indices

YEAR           Ln(per cap GDP)                 GDP growth                         Life Expectancy

               MPOL   MPOL   MPOL       MPOL   MPOL   MPOL        MPOL   MPOL   MPOL     

            2=0, (i=1   2=0        2=1      2=0, (i=1    2=0       2=1        2=0, (i=1  2=0       2=1

1990       0.0741   0.0658    0.7301      0.1539    0.1064   1.1673       0.0949   0.0672    0.7929

1992       0.0744   0.0648    0.7190      0.1163    0.1070   1.5838       0.0955   0.0651    0.7481

1995       0.0759   0.0627    0.6903      0.1030    0.1261   1.8832       0.0974   0.0641    0.7170

1997       0.0763   0.0622    0.6828      0.1546    0.1199   1.7484       0.0991   0.0646    0.7068

1999       0.0771   0.0615    0.6699      0.1205    0.1068   1.3823       0.1053   0.0685    0.7467

follow the patterns indicated by their corresponding sample standard deviation counterparts

whereas the inequality indices for growth rates do not, but recall that these have been standardized
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in each period for the inequality calculations whereas the standard deviations are based upon raw

data. Sample weighting again has a profound effect upon the conclusions drawn, effectively

reversing the trends observed in lnGDP and Life Expectancy. Since in welfare and inequality

calculations sample weighting by population size is appropriate, we now focus upon these results.

It is interesting to note that reliance upon any single aspect of the lifetime wealth calculation

would lead to quite different inferences from those derived from any other. Population Weighted

Gini and Polarization coefficients for lnGDP would suggest a continued and sustained decline of

both inequality and polarization whereas inequality and polarization time profiles are “U” shaped

for life expectancy and inverted “U” shaped for growth. What conclusions are to be drawn when

the various trends are taken together?   With regard to the multivariate indices it should at first be

observed that the Mgini  and Tsui / Maasoumi indices are in broad agreement, 1995 population

weighted and population and characteristic weighted indices being the exception. Generally the

Tsui / Maasoumi indices exhibit more variability than the corresponding Mgini index. Given the

diverse trends of the components it is no surprise that no solid underlying trend is discernable in

the multi-variate indices except for the polarization indices which both exhibit an inverted “U”

time profile.

Conclusions.

      Sample weighted tests facilitating the examination of welfare, poverty and inequality in many

dimensions have been introduced which, in an example of an international representative agent

lifetime welfare model, indicate that substantially different conclusions may be inferred from

those drawn from univariate comparisons. The index techniques introduced are simple to use

generalizations of the familiar univariate Gini coefficient which also extend the Esteban and Ray

(1994) class of polarization indices. These were found to follow closely the behavior of ethically

based and generalized entropy multidimensional inequality indices. The testing techniques are

multivariate extensions of the Kolmogorov-Smirnov two sample test (Rao (1972)) together with a

simple adaptation to examine the “multidimensional tail behavior” of mean standardized data

employed in inequality studies. 
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       In an application studying income, growth and life expectancy, three variables that influence

lifetime wealth, the variables exhibit quite distinct and different inequality and polarization trends

over the observation period. It is then perhaps no surprise that the multivariate indices which in

essence report an agglomeration of the three indices indicate no such discernable trend except for

the “U” shaped time profile of the polarization indices over the period of study. It is equally

unsurprising that the unequivocal welfare improvements inferred from a univariate analysis (see

for example Anderson (2004)) become much less clear in the multivariate paradigm. Variations in

the sample weighting scheme also had a profound impact on the conclusions to be drawn from

both indices and tests.
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Appendix 1.

Countries represented in the sample.

Algeria Angola Antigua and Barbuda Argentina Australia Austria Azerbaijan Bangladesh

Barbados Belarus Belgium Belize Benin Bolivia Botswana Brazil Bulgaria Burkina Faso

Burundi Cambodia Cameroon Canada Cape Verde Central African Republic Chad Chile China

Colombia Comoros Congo Costa Rica Cote d'Ivoire Cyprus Dominica Dominican Republic

Ecuador Egypt El Salvador Equatorial Guinea Estonia Ethiopia Fiji Finland France

French Polynesia Gabon Gambia Ghana Greece Guatemala Guinea Guinea-Bissau Guyana

Haiti Honduras Hong Kong Hungary Iceland India Indonesia Iran Ireland Israel Italy

Jamaica Japan Jordan Kazakhstan Kenya South Korea Kyrgyz Lao Latvia Lesotho Luxembourg

Macao Madagascar Malawi Malaysia Mali Mauritania Mauritius Mexico Mongolia Morocco

Mozambique Namibia Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria

Norway Pakistan Panama Papua New Guinea Paraguay Peru Philippines Portugal Romania

Rwanda Samoa Saudi Arabia Senegal Sierra Leone Singapore Slovak Republic Solomon Islands

South Africa Spain Sri Lanka St. Kitts and Nevis St. Lucia St. Vincent and the Grenadines

Swaziland Sweden Switzerland Syrian Arab Republic Thailand Togo Trinidad and Tobago

Tunisia Turkey Uganda Ukraine United Kingdom United States Uruguay Vanuatu Venezuela

Zambia Zimbabwe. 
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