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Abstract

This paper uses Chinese urban data to investigate two important issues regarding city size
distributions. The nature in which cities of different sizes grow relative to each other is examined
and, contrary to the common empirical finding that the relative size and rank of cities remains
stable over time, it is found that the period of economic reforms since 1980 was one of significant
structural change in the Chinese urban system. The city size distribution remains stable before the
reforms but exhibits a convergent growth pattern in the post-reform period. In addition Pearson
goodness-of-fit tests are employed to examine directly which theoretical distribution provides the
best approximation to the empirical city size distribution. A parallel study of city size distributions
in China and U.S. reveals substantial differences with lognormal distributions being the preferred
specification in the case of China and Pareto distributions being preferred in the case of the US.
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1. Introduction

Two questions have been of long-standing interest to urban economists: the first one is how cities
of different sizes grow relative to each other. Most empirical studies suggest that relative size and
rank of cities remain stable over time. The results of Eaton and Eckstein (1997) favored a parallel
- growth pattern over divergent or convergent growth patterns for French and Japanese cities in the
period of 1876 - 1990. Black and Henderson (1999) constructed a theoretical model to explain the
parallel growth rates of cities. They used data on U.S. cities from 1990 to 1950 to support this
pattern of growth. Overman and Ioannides (2001) developed a stochastic transition kernel for the
evolution of the distribution of U.S. metropolitan area populations from 1900 to 1990. Their results
predominantly suggest persistence in the city size distribution. Dobkins and Ioannides (2000)
studied the dynamic evolution of the city size distribution in U.S. and confirmed the city growth
in U.S. is relative stable over time. Sharma (2003) examined the growth of Indian city sizes from
1901-1991 and found that the growth of cities may be parallel in the long-run but with short-run
deviations from the long-term pattern.

The second question is which ‘theoretical distribution provides the best approximation for
the empirical city size distribution. The dominating view in literature is that the Pareto distribution
fits best. The early idea that the size distribution of cities can be approximated by a Pareto
distribution was mentioned by Auerbach (1913), Zipf (1949) claimed that not only the size
distribution of cities follow a Pareto distribution, but also the distribution has a shape parameter
equal to 1. In empirical studies of the city size distribution, when cities are ordered by population
size, regressing the logarithm of their rank on the logarithm of their population has resulted in a

slope coefficient close to minus one in so many instances that the phenomena has acquired the



status of the eponymous Zipf's Law?. Taking exponents, the relationship can be seen to be a
special case of a power rule relating the size rank of a city to some power of its population size
rendering the statistical distribution appropriate for the relationship a member of the family due
to Pareto (1897) more commonly employed in modeling income distributions. More generally, the
Pareto exponents generated from the rank-size regression are not necessarily equal to unity, and
this so-called “rank-size rule”is believed to be applicable to almost all countries around world.
Rosen and Resnick (1980) estimated the Pareto exponent for 44 countries. Their estimates ranged
from 0.81 to 1.96, with a sample mean of 1.14. Soo (2002) investigated a new data set of 75 countries
and found the average value of Pareto exponent is 1.1, which is significantly greater than 1
predicted by Zipf's Law.

The conventional rank-size regression has also been extended to test the validity of Pareto
distribution in representing the city size distribution. Hsing (1990) argued that the conventional
methodology pursued in the literature suffers from the fact that the form of distributiqn is
presumed a priori rather than having been inferred from a general functional form capable of
accommodating the Pareto distribution as a special case. He suggested the Box-Cox general
transformation function as a more suitable test and found that the Pareto distribution is
significantly rejected by U.S. data. In a similar vein Alperovich and Deutsch (1995) also found the
Pareto distribution is rejected in favor of a general Box-Cox function when using international data.
Ioannides and Overman (2003) used a nonparametric procedure to estimate Gibrat’s Law for city
growth processes and their results favored Zip’s Law.

The rank-size rule emerged from a regularly observed feature of data and lacked theoretical

foundation. Gabaix (1999) provides a theoretical basis by entertaining a model of the city size

2See Gabaix (1999) for citations and an excellent discussion of the literature.



distribution that is the consequence of a stochastic random growth process common to individual
city sizes, effectively an application of "la loi de l'effet proportionnel" employed in other contexts
by Gibrat (1930, 1931). Initial city size is assumed to suffer a sequence of mutually independent
proportionate shocks (in effect a Geometric Brownian Motion) each independent of initial city size
and none of which differ substantially from one. Under such conditions Gibrat demonstrates that,
after sufficient time, a log-normal size distribution would emerge with a variance that increased
over time and, if the process had sufficient positive drift or growth, with a mean that increased
over time. Subsequently, by sacrificing the initial size independence assumption, Kalecki (1945)
modified Gibrat's contribution to admit log-normality with a non-increasing variance. The
distinction between the two is important because the former predicts a distribution that advances
in an unbounded fashion whereas the latter predicts a distribution whose location trends through
time with the growth rate but whose variance is bounded. Obviously neither the Gibrat nor Kalecki
models are consistent with the Pareto distribution®. Gabaix establishes the link by positing that the
Geometric Brownian Motion for city size is subject to a reflective lower bound. He demonstrates
that, provided the growth rate of the number of cities does not exceed the growth rate of their
populations, the rank size distribution with a coefficient of one emerges as a consequence. Without
the lower bound, city size would follow Gibrat's Law of Proportionate Effects. In a similar fashion
Reed (2000, 2003) arrives at a "Double Pareto" power rule by positing the unbounded Geometric
Brownian Motion to have progressed for a random period of length T described by an exponential

distribution (cities have existed for a random period of time described by the exponential

3 Early models by Steindl (1965) and Simon (1955), based on assumptions regarding the
relationship between the rate at which cities emerged and the rate at which they grew, ran into
difficulties because their preconditions are basically counterfactual. Brakman et. al. (1999) by
introducing suitably calibrated negative externalities into a general equilibrium location model are able
to simulate Rank Size distributions.



distribution). In this case city size follows a power law in both tails. Again for fixed T, city size
would follow Gibrat's law.

This paper exploits Chinese data to investigate these two general issues regarding the city
size distribution. There are three reasons why the experience of China is of interest. First, most
empirical studies in this topic focus on the developed countries and, as a developing country with
 the largest population and a rapid urbanization process, China provides a "non-developed"
comparison case. Secondly, over the last half century, China has experienced substantial economic
reform including a transition toward a market economy and integration into the world economy.
Whether such a fundamental reform induced a change in the city size distribution is of interest.
Thirdly, China has experienced very rapid urbanization process since 1980, with the development
of a large number of new cities. This stage is significantly different from the stable city growth
stage in most literatures, where the main channel of urban growth is the expansion of existing
cities rather than the birth of new ones. A critical element of the Gabaix (1999) argument is that the
rate of growth in the number of cities does not exceed the population growth rate and it is
instructive to observe the consequences for his theory when this condition is not met.

This paper makes two contributions. First, in examining the evolution of the Chinese urban
system over time it finds that economic reforms engendered a structural change in the city size
distribution. In the pre-reform period the city size distribution is relatively stable while in
post-reform period there is a significant convergence trend in city growth. Secondly, alternative
functional forms suggested by theory were examined to see which provided the best
approximation to the distribution of city sizes. Rather than relying on the value of a regression
coefficient as evidence of a distributional form, maximum likelihood estimates of the parameters

of theoretically relevant distributions were developed and their congruence with the data was



examined directly via Pearson Goodness of Fit tests. For comparison a parallel exercise is
undertaken for the USA as a representative of the many countries for which evidence of the power
law abounds®. The results, whilst supporting the rank size distribution with a coefficient close to
one for the USA, strongly reject various power law specifications (and consequently of Zipf's law)
for China. In the case of China Gibrat's law appears to describe the situation well prior to the
economic reform and Kalecki's reformulation appears to be appropriate in the post reform period.

The paper is organized as follows: Section 2 provides some background to the Chinese city
data utilized in the study. Section 3 tests the structural break in the evolution process of Chinese
urban system. Details of the various distributions are outlined and examined for thier empirical

coherence in section 4. Conclusions are drawn in section 5.

2. City Definition and Data Description

The definitions of a city differ across countries. Chinese cities are officially defined as “urban
places”which correspond to local administrative entities. There are three different administrative
levels of Chinese cities: municipalities (province-level cities), prefecture-level cities and
county-level cities, each having the same status as the province, prefecture and county,
respectively. Urban places with townships or lower jurisdictional levels are not treated as cities.
This administrative definition of a city is less ideal than the metropolitan areas generally employed
in studying city size distributions. Due to data limitations, the population of metropolitan areas
in China are not available.

The choice of the lower population threshold is important in the study of city size

4 See for instance Dobkins and Ioannides (2000) for the USA and Eaton and Eckstein (1997) for
France and Japan.
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distributions. The Chinese government announces certain criteria distinguishing urban and rural
places, cities and towns. In particular there is a lower population boundary for cities which the
government altered in 1955, 1963 and 1986. To assemble the time consistent data, 100,000 was
adopted as the lower population boundary according to the official criteria announced in 1963 —
it defines a city as an urban agglomeration with a total urban population larger than 100,000°. The
| year when the People's Republic of China was established, 1949, was chosen as the starting point
of the sample. Economic reforms began at the end of 1970's and accelerated the urbanization
progress in China. Roughly speaking 10-year intervals were chosen for the pre-reform period
(1949-1980) and 5-year intervals for reform period (1980-1999).

The Chinese urban system data set was compiled from two sources: the urban population
of cities from 1949 to 1989 was drawn from The Forty Years of Urban Development (State Statistical
Bureau, 1990) and the data for 1990 to 1999 was drawn from various issues of Chinese Urban
Statistical Yearbooks (State Statistical Bureau, 1991-2000).

[Table 1 about here]

Panel A of Table 1 summarizes the change in the number and average size of Chinese cities
from 1949 to 1999. There appears to be three stages of city growth. The first is a stable growth stage
from 1949 to 1961; the second is a stagnation stage, from 1961 to 1978; and the third is a rapid
expansion stage coincident with the economic reforms which started in 1978. A striking feature
of the data is the large number of new cities, especially in the reform period. In the pre-reform
period the number of cities annually increases by about 5.5%, in the reform period the growth rate

increases to 11.4%. In large part urbanization in China takes the form of the creation of new cities,

5 In China certain urban places with less than 100,000 inhabits are also treated as cities
because of their political or economic importance.
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a quite different experience from that of developed countries, where urbanization mainly comes
from the expansion of existing cities® . Another important pattern worthy of note is that the
standard deviation of city size decreases after 1980 with average size growing steadily over time.
This implies a city size convergence trend not unlike o-convergence observed in economic growth
and income distribution analysis. The last two rows of Panel A compares the number of total cities
~ and the number of cities in our sample. Except the early period, 1949 and 1961, there are about 10-
15 cities excluded because the urban population is less than 100,000 inhabitants reflecting the view
that the low population boundary of 100,000 inhabitants is reasonable in the case of China.

For comparison data for US city populations was drawn from the “County and City Data
books” of the US Census Bureau which_is summarized in Panel B of Table 1. Although the
metropolitan area population is most commonly used in U.S. studies, for comparability reasons
the data for the administratively defined cities (instead of metropolitan areas) is used and a lower
population boundary of 100,000 is adopted. In this setup, ensuring differences between city size
distributions in the two countries will not due to different city definitions or lower population
boundaries. Since the total population in China is much larger than that of the U.S., the uniform
low population boundary will exclude a higher proportion of U.S. cities from the sample, a
common limitation of cross country studies. However, as will be demonstrated later, redefining

the lower bound of a Pareto distribution will not affect its parametric structure.

3. City Size Growth in China
The evolution of city size distributions depends upon two separate processes: the expansion or

shrinkage of existing cities and the city birth process. Most studies of developed countries focus

¢ For example, Eaton and Eckstein (1998) found “there are no new cities” in France and Japan.



on the growth of exis.ting cities because of the extremely low birth rates of new cities. In the rapid
urbanization process of China, new cities play an important role in shaping the city size
distribution. Here a convergence hypothesis regarding the relative growth of existing cities is
examined, the conventional rank size regression is employed to test the stability of Pareto
exponent over time for all cities and finally a Markov chain method is exploited to examine the
. intra-distributional mobility of all cities, especially the new ones.

To explore the growth pattern of existing cities, a panel data set” which excludes all new
cities between 1961 and 1999 is constructed. The following cross section regression, familiar in the
empirical growth literature, is used to test the B convergence hypothesis of city size growth:
Ltog y’ ) = a - A2 D080, + ger (1]

Here y,, is the size of city iattimet, a is constrained to be identical across cities, and coefficient

B is interpreted as the speed of convergence. The nonlinear least-squares results are reported in
Table 2.
[Table 2 about here]

As Table 2 reveals there is significant f convergence in both pre-reform and reform periods
for existing cities. Moreover, the convergence significantly speeds up in the reform period. This
pattern is clearly shown in Figure 1, where the annual growth rate and the initial city size are
negatively correlated.

Returning to the full sample, the conventional rank size regression is employed to examine
the evolution of the Pareto exponent over time. 1980, the first observation in the reform years, is
chosen to be the benchmark. Time dummies and interaction terms are included to capture the

different intercepts and slopes in each year from 1980. The result is reported in Table 3.

7 This data set includes 157 cities and only covers the period from 1961 to 1999 because the
paucity of observations in 1949 render the balanced panel data set too small.



[Table 3 about here]

As may be observed, in 1980 there is a significant structural break in the evolution of the
Pareto exponent 0. For the pre-reform period, 1949-1980, the estimated 8 is not statistically
significantly different from -1 at the 1% level. From 1980 to 1999, the size distribution of the cities
is increasingly convergent except for a slight reversal from 1994 to 1999. The Pareto exponents are
significantly higher than 1 in the reform period, which implies that the distribution of city size has
become more equal than Zipf's law would predict. The intercepts are subject to more variation
since they are directly dependent on the sample sizes in each year. This pattern is different from
the parallel growth pattern of developed countries (Eaton and Eckstein, 1997, Dobkins and
Ioannides, 2000).

A Markov chain method is often used to analyze intra-distribution income dynamics
(Quah, 1993). Here Dobkins and Ioannides (2000) is followed in assuming the size distribution of
exiting cities follows a first-order homogeneous Markov process. Panels A and B of Table 4 report
the average decade transition matrix in the pre-reform and reform periods respectively. The
chosen intervals were based on %, %, %,1 and 2 times the sample mean.

[Table 4 are about here]

Two features stand out. First, the diagonal entries indicate that larger cities have higher
persistence and smaller cities are more likely to move to upper categories. The trend of upward
concentration is more significant in the pre-reform period than in the reform period which could
be due to new entries in the lower tail. To examine this, the balanced panel of 157 cities existing

from 1961 to 1999 is employed to calculate the distribution abstracted from new entries and exits.
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The results, not repc;rted here®, indicate that a significant concentration toward the upper tail of
the distribution remains, suggesting real growth in city size as well as new entrants is causing the
phenomenon. This pattern is quite different from the case of France and Japan (Eaton and Eckstein,
1998).

A second feature is apparent in the last row of the table which shows the frequency
distribution of new entrants. The relative size of new cities is significantly different before and after
1980. In the pre-reform period, 77% of new cities are smaller than half of the mean. In the reform
period, 78% of new cities are medium size (from half the mean to twice the mean). Recalling that
the observation interval in the reform period is 5 years or shorter this is truly remarkable. It implies
that settlements too small to be classified as cities in the distribution at the onset of the interval
between observation periods have grown to such a size as to merit their entrance in the middle of
the distribution within 5 years.

Combinations of the growth processes of existing cities and the pattern of new entrants
explain the difference in city size evolution in pre-reform and post-reform periods. In the
pre-reform period, the new entrants concentrate in the lower tail and raise the relative size ranking
of existing cities. For exisﬁng cities, small cities expand into the middle range with the big cities
in the upper tail exhibiting strong downward immobility. The combination of these two
movements results in a relatively stable size distribution which is not significantly different from
the prediction of Zipf's law. In the reform period, the existing small cities grow faster than larger
cities and new entrants concentrate around the middle sizes. As a result, the size distribution

exhibits a strong convergence trend.

¥ Available from the authors on request.
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4. Statistical Tests of Alternative Distributions
Here the alternative functional forms used to describe the city size distribution are outlined and
the Pearson Goodness-fit test is employed to examine which distribution provides the best
approximation to the empirical city size distribution in China and U.S.
4.1 The alternative distribution representing city size distribution
_ The rank-size rule for a city size can be derived by transforming the counter cumulative density
of the Pareto distribution where city population size is a random variable P with realization p such
that: Prob(P>p) = 1-F(P<p) = A*p . For a sample of n cities with sizes p, i=1,..,n, define the
empirical density F(p) as F°(p,p,) = %i I(p,sp). The rank size rule emerges from the

is
relationship: l

Rank(p,) = n(1-F “p,p)) ~ nd'p,”® [2]

This relationship suggests a regression equation for the logarithm of the city population rank of

the form:

¥, = InRank(p,) = InA - Olnp, + e, 3]

where A=n4 *and e, is assumed to exhibit all the statistical properties of an unobserved error
process that render [2] a valid regression equation. A special case of this distribution where 8 =1
corresponds to Zipf's law (Zipf [29]).

For F(Psp) to be the density function of a Pareto distribution, A =p.land p> pon >0
which yields a pdf of the form f (p,p_.) = 0po,p **®. In the current context Pp, corresponds
to the minimum possible size of a city, the lower reflective boundary in Gabaix’s model. Its precise
definition has been a matter of theoretical debate in the literature and set by arbitrary fiat in

practice. However it is interesting to note that, from the point of view of evaluating empirical
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support for rank size distributions, providing a lower bound is set somewhere above the true
lower bound, the viability of a Pareto distribution is unaffected. Suppose settlements were defined
as cities only when their population exceeded Pye > Pmin, SO that only data for city sizes greater
‘than or equal to py were entertained, the conditional p.d.f. f(p| p2pu.) is readily shown to be
f(P,Pued) = OPaer P®™ , which is exactly the same pdf with a redefined lower bound.

If the lower bound were known’, [3] could be rewritten as:

y*, = In(Rank(p)/n) = - eln(;’i') ‘e [4]

This specification provides a more efficient estimator of 6 given by:

* l'li
Yy In(—)
_ i=1 Pmm

eOLS -

3 a2y

whereas the maximum likelihood estimator is given by:

n

3 i)
i=1 Pmm

Orr

Under an assumption that cities have existed for a period T where T is governed by an

exponential distribution, Reed (2000) develops a Double Pareto distribution for city size where:

o) = B2y for pp? [5]
G+B )4

—(-}"-[-3—(1)""“l otherwise
0.+B p*

Av)

Note that when p,, is unknown its maximum likelihood estimator is the first order statistic of
the sample. This is of course a biased estimator with a p.d.f. of n8(p../ p)"°/p which is rendered
unbiased by pre-multiplication by (6n-1)/6n (in the case of Zipf this reduces to (n-1)/n).

13
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This distribution yields a rank order rule for both upper and lower tails of the distribution

respectively of the form:

y*. = InRank(p)n) =in(-L~) - ain(ELy + ¢, for p, > p» 6]
P

arp

y*, = In(Rank(p)/n) = ln(a—(:";) + Bln(;op—i) + e, forp <p*

Maximum likelihood estimates for a, p and p* are readily obtained from [6].

Gibrat’s (1999) formulation is based on the premise that the initial city size variate P is
subject to a sequence of mutually independent proportionate changes e,, i = 1,2,...,t so that after
the passage of time t, P, = Py(1+e;)(1+e,) ...(1+e). Assume |e;| to be small relative to 1 and let

In(1+e,) = u, where u, is an i.i.d. process with zero mean and variance o® which is small relative

to 1 then:

InP, = u + InP, | + u, [7]

with p (again small relative to one) corresponding to the incremental drift or growth in city size
and u, corresponding to the increment of a drifting Weiner process which, after sufficient passage
of time t, renders the distribution of InP as N(InPy+(p-o/2)t , o%f). In this framework the
progress of city size is a random walk with drift, there is no long run “equilibrium” city size that
is the consequence of economic and physical forces.

Kalecki (1945) proposed an alternative process which, in the present context, replaces (4]

with:

InP, =n + pt + (1-MinP,_; + u, [8]
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where1>A >0. Kal;ecki establishes that, after a sufficient passage of time, the distribution of InP
will be N((r+ut)/A, o /X). Again p may be construed as the incremental growth component but
in this case the logarithm of the proportionate change in P is negatively related to InP via -\, note
also the variance of the process is constant. Unlike Gibrat’s model, economic forces are at work
here, albeit in a simplistic fashion, since [8] may be re-written as a partial adjustment model with
(n+ut)/A as the target or equilibrium city size and A as the adjustment rate. In case [7] city size
distributions are divergent through time and in case [8] city size distribution may be thought of
as convergent or at least non-divergent in the sense that whilst both models predict increasing

means [7] predicts increasing dispersion whereas [8] does not.

4.2 Tests for Distributional Form

Goodness of Fit (GF) Tests (Pearson, 1900) are a tool for examining the coherence of the data with
a theoretical distribution. The tests are formed by dividing the range of a random variable into K
mutually exclusive and exhaustive regions indexed k=1,.., K. Letting H, be the hypothesized (or
expected) number of observations falling in the k’th region (based upon sample size and the
hypothesized distribution) and Oy be the number actually observed in that region, Pearson showed

that f( ), the pdf of the test is asymptotically:

K (H,-O)}
AGF = ; (—"—’i) = 2(k-1-j) [9]
= k

where j corresponds to the number of parameters estimated in order to fully specify the null
distribution. Small values of the test statistic correspond to coherence between observation and
theory, large values to a lack of coherence, hence it is appropriate to employ a one sided upper

tailed test.

15



+

Examining divergence is problematic. The standard “F” test for variance ratios is
notoriously bad when the underlaying data generating processes diverge from normality
(Anderson, 2001), furthermore divergence or polarization need not result in increased variances
(Wolfson, 1994). The problem may be resolved by resorting to modifications of a test analogous
to GF (herein denoted PAT for Pearson Analogue Test) used to examine the similarity between two
samples (Anderson 2001, 2002). Letting O, be the observed proportion of observations in sample
A falling in the K’th region, O, the corresponding value in sample B and J, the proportion of
observations falling in the k’th region when the samples are pooled, the test may be formulated

as:

[10]

and it is distributed as x*(K-1). In this case small values of the test statistic correspond to coherence
between the distributions underlaying the two samples and large values correspond to differences
in the two underlaying distributions. When A and B correspond to time indices modifications of
this test (essentially by employing particular linear combinations of elements in the sum, see
Anderson (2002) for details) may be used to examine whether a distribution is diverging or
polarizing over time whether due to the tails of the distribution moving apart or to there being
increased concentration in them. To establish divergence when progressing from A to B the test
has to be used twice, once to “not reject” divergence in moving from A to B and once to reject
divergence from B to A. In all goodness of fit and divergence tests reported here partitions were
chosen to generate 10 equiprobable cells or regions.

It has been common in empirical work in this field to interpret results of rank size
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regressions reported in Table 3 as evidence favoring the Pareto distribution and in particular as
support for Zipf's law. However they do not constitute tests of the assumption that the data are
generated by a Pareto distribution. Furthermore they only constitute an indirect test of Zipf's law
in that, whilst the regression coefficient may not be significantly different from one, the underlying
distribution may not be Pareto. As a consequence, following equation [3], more efficient estimates
of the Pareto coefficients together with Goodness of Fit tests are reported in Panel A and B of Table
5 for China and the USA respectively. Since minimum city size has been set at 100,000 there is no
need to estimate the lower bound, however maximum likelihood estimates are reported for
information purposes.
[Table 5 about here]

With respect to the results for China the first thing to note is that the maximum likelihood
estimates and the restricted regression estimates are consistently lower than the standard OLS
estimates in Table 2 and uniformly lower than 1 in absolute value'. The Zipf's restriction (8 = 1)
is rejected in every instance except 1949. In addition the Goodness of Fit tests strongly reject the
Pareto Distribution hypothesis in all but the 1949 observation set.

This is in striking contrast to the USA results presented in Panel B of Table 5 where
although the Zipf restriction is rejected in 3 of 6 cases the Pareto distribution is never rejected at
the 1% level and the coefficient estimates are uniformly higher than 1 in absolute value. Note also
the estimated lower bounds are invariably higher than the true lower bound for China and
invariably lower for the USA.

[Table 6 about here]

Double Pareto estimates for China are presented in Table 6. In the first three observation

10 Note that when the Pareto parameter is less than one the variable has no finite moments.
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years the information matrix is singular with the estimates converging to a Single rather than
Double Pareto specification. (USA estimates always converged to the Single Pareto formulation
reported in Panel B of Table 5). Apart from estimates of p* (which are closely related to the sample
means), parameter estimates change little from period to period relative to their standard deviation
in the remaining years. Again the Goodness of Fit tests strongly reject the Double Pareto
hypothesis leaving the preponderance of evidence against the Double Pareto formulation for both
China and the USA.
[Table 7 about here]

Panel A and B of Table 7 present the results for the log normal city size distribution
specification for China and the USA respectively. With regard to China the Goodness of Fit Tests,
with one exception (1980) fail to reject the null hypothesis of log normality at the 1% level,
suggesting that the log-normal model is a much better rationalization of the data. The mean of the
distribution indicates annualized percentage city size growth rates between successive observation
periods of 0.73, -0.78, 1.84, 4.08, 434, 3.57, and 0.30 assuming a Gibrat process and 1.24, -0.45,
1.64, 2.87, 3.02, 2.66 and 0.47 assuming a Kalecki process. One aspect is perplexing for advocates
of the Gibrat model, namely the diminishing estimates of the Standard Deviation over time from
1970 onwards. Under the Geometric Brownian Motion assumption the sample standard deviation
is an estimate of ov'T and should be increasing with the passing of time. As with the Pareto model,
the results for the USA are in complete contrast to those for China with log-normality strongly
rejected in every case though the standard deviation declines through time here as well.

[Diagrams about here]
The Chinese results are illustrated in diagrams for each observation year which overlay

Kernel estimates of the empirical probability distribution function on respective plots of the
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estimated Pareto, D01;b1e Pareto and Log Normal distribution functions. Perusal of the diagrams
makes it quite clear how it is that the log normal formulation best fits the data. Kernel" estimates
of the distributions always generate modal points above the minimum city size (unlike the Pareto
distribution) and the modal points always appear to be points of continuity (unlike the Double
Pareto distribution). The close proximity of the Log Normal Distribution to the Kernel Density
Estimate (relative to the other distributions) in each case attests to it providing the best fit. The
issue remains as to whether convergence or divergence underlays the log normal city size data
generating process for China, this is assessed in Table 8.
[Table 8 about here]

Assuming divergence in distribution to be reflected in increased variances a simple “F” test
is appropriate, column 2 of Table 8 reports this. As may be observed the test is unable to detect any
discernable change in variance from period to period except for 1985 to 1990 and 1990 to 1994
when variance reductions were indicated at the 5% level. As noted earlier this test has notoriously
bad size and power properties and divergence need not imply variance change. Columns 3
through 6 of Table 8 report the details of divergence tests of the first and second order which, when
considered at the 5% critical level, indicate no divergence or convergence from 1949 through to
1980 and convergence of both types (tails getting closer together and appearing less concentrated)
from 1980 through to 1994 with divergence occurring from 1994 to 1999. It may be concluded that
convergence appears to be the predominant force in the economic reform period suggesting that
the Kalecki formulation rather than Gibrats formulation underlays the city size data generating
process. Thus Chinese cities may be thought of as converging to an equilibrium city size which is

itself trending upward through time.

K ernel estimates were based upon the Epanechnikov kernel (Silverman [25]).
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5. Conclusions

Whilst data on Chinese city sizes yield results for commonly employed rank size regressions that
accord with the conventional wisdom of a Pareto distribution, closer examination reveals the
Chinese case to be substantially different. Whereas a parallel study of the USA data reiterates
support for a power law in the form of a Pareto distribution, the same specification is strongly
rejected in the case of China in favor of a Log Normal distribution. The two distributions are
linked. Describing the progress of city sizes through time by a Geometric Brownian Motion
engenders a Log Normal city size distribution at a given point in time. Gabaix (1999) demonstrates
that when the Geometric Brownian Motion is constrained by a lower reflective boundary a Pareto
city size distribution at a given point in time results, moreover the Pareto coefficient will equal 1

when the growth rate of new cities is smaller than the growth rate of city sizes.

It would be simple to conclude that the lower reflective boundary is ineffective in the Chinese case
but the evidence casts doubt upon this. The log normal distribution that derives from a Geometric
Brownian Motion process has an upward trending mean and variance (Gibrat’s Law) following
from the independence of the process from initial city size. The evidence here suggests a constant
or declining variance in all but two short intervals (1961-1970 and 1994-1999) with the declines
being more apparent in the reform period. This is more in line with Kalecki’s specification of the
city size process which admits dependence between growth rates and city sizes through time but
still generates log normality in the cross sectional distribution however with a non-increasing
variance. In this formulation there is an equilibrium city size that could be trending through time

(the result of technological innovation etc).
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A striking feature of the reform period is the emergence of new cities in the middle of the
distribution, the consequence of incredibly rapid growth 117 the early life of new entrant cities. This
is not a feature of the pre reform period where a steady, but statistically insignificant, increase in
the variance of the distribution is observed and new entrants appear at the lower end of the size
distribution. This contrast is more striking given the attenuated gap between observation periods
. in the reform period. Thus a structural change does appear to have occurred at the onset of the
reform period.

The growth in the numbers of cities should also be acknowledged since a precondition for
Zipf's law in Gabaix (1999) is that the growth in the number of new cities should not exceed the
growth in city sizes. In the case of China it does throughout the observation period. All in all
Chinese city size distributions appear to differ substantially from the conventional wisdom that

is embodied in Zipf's Law and appear to have been affected by the period of economic reform.

21



References .

Alperovich, G. and J. Deutsch, 1995, The appropriateness of the Pareto distribution using a
generalized Box-Cox transformation function, Journal of Regional Science 35, 267-276.
Anderson, G. J., 1994, Simple tests of distributional form”, Journal of Econometrics 62, 265-276.
Anderson G. J., 2001, The power and size of nonparametric tests for common distributional
characteristics, Econometric Reviews 20, 1-30.

Anderson G. J., 2002, Toward an empirical analysis of polarization, Working paper, Economics
Department, University of Toronto.

Auerbach, F., 1913, Das Gesetz der Belvolkerungskoncertration, Petermanns Geographische
Mitteilungen 59, 74-76.

Black, D. and V. Henderson, 1999, A theory of urban growth, Journal of Political Economy, 107,
252-284.

Brakman S. , H. Garretsen, C. Van Marrewijk and M. van den Berg, 1999, The return of Zipf:
toward a further understanding of the rank size distribution, Journal of Regional Science 39, 183-
213.

Chenery H.B. and M. Syrquin, 1975, Patterns of development 1950-1970 ( Oxford University Press).
Dobkins L. and Y. Ioannides, 2000, Dynamic evolution of the U.S. city size distribution, in: J. M.
Huriot and . F. Thisse, eds., Economics of cities (Cambridge University Press) 217-260.

Eaton ]. and Z. Eckstein, 1997, City and growth: theory and evidence from France and Japan,
Regional Science and Urban Economics 17, 443-474.

Gabaix, X., 1999, Zipf's law for cities: an explanation, Quarterly Journal of Economics 114, 739-767.

Gibrat, R., 1930, Une Loi Des Repartitions Economiques: L’effet Proportionelle, Bulletin de

Statistique General, France, 19, 469.

22



Gibrat, R, 1931, Les Inegalites Economiques (Libraire du Recueil Sirey, Paris).

Hsing, Y., 1990, A note on functional forms and the urban size distribution, Journal of Urban
Economics 27, 73-79.

JIoannides, Y. M. and H. G. Overman, 2003, Zipf's law fro cities: an empirical examination,
Regional Science and Urban Economics, 33, 127-137.

_ Kalecki M., 1945, On the Gibrat distribution, Econometrica 13, 161- 170.

Kolmogorov, A., 1933, Sulla determinaazione empirica di una legge di distribuzione, Giornale
dell’Instituto Italiano degla Attuari 4, 83-91.

Overman, H. G. and Y. M. Ioannides, 2001, Cross-sectional evolution of the U.S. city size
distribution, Journal of Urban Economics, 49, 543-566.

Pareto, V., 1897, Cours d’Economie Politique (Rouge et Cie, Paris).

Pearson, K., 1900, On a criterion that a given system of deviations from the probable in the case
of a correlated system of variables is such that it can reasonably be supposed to have arisen from
random sampling, Philosophical Magazine 50, 157-175.

Quah, D., 1993, Empirical cross-section dynamics in economic growth, European Economic Review
37, 426-434.

Reed, W. ]., 2001, The Pareto, Zipf and other power laws, Economics Letters, 74, 15-19.

Rosen, K. T. and M. Resnick, 1980, The size distribution of cities: an examination of the Pareto law
and primacy, Journal of Urban Economics 8, 165-186.

Sharma, S., 2003, Persistence and stability in city growth, Journal of Urban Economics, 53, 300-320
Soo, K. T., 2002, Zipf's law for cities: a cross country investigation, Mimeo, Centre for Economic
Performance, London School of Economics.

State Statistical Bureau, 1990, Forty Years of Urban Development.

23



State Statistical Bureau, 1991-2000, Chinese Urban Statistical Yearbooks.

Silverman, B. W., 1985, Density estimation for statistics and data analysis, monographs on statistics
and applied probability, (Chapman and Hall).

Simon, H., 1955, On a class of skew distribution functions, Biometrica 42, 425-440.

Steindl, J., 1965, Random processes and the growth of firms (Hafner, New York).

~ Wolfson, M.C., 1994, When inequalities diverge, American Economic Review Papers and
Proceedings 84, 353-358.

Zipf, G., 1949, Human behavior and the principle of last effort (Cambridge MA: Addison Wesley).

24



Table 1
Summary Statistics of City Size

Panel A: Cities in China

Year 1949 1961 1970 1980 1985 1990 1994 1999
Mean 47.9 56.4 56.4 64 67.7 73.9 78.7 82.3
Std deviation 60.7 75.9 77.2 81.5 76.5 734 71.5 87.9
Median 28.4 35.3 29.9 36.7 43.6 571 63.2 64.1
Minimum 10.1 10.2 10.2 10.2 10.1 10.2 11.97 10
Maximum 4189 6412 5802 6013 6983  783.5 953 1127
Sample size 77 176 164 208 313 453 606 658

Number of cities 132 208 177 223 324 467 622 667

Panel B: Cities in U.S.

Year 1930 1940 1950 1960 1970 1980 1990 2000
Mean 39.2 47 47.3 43.6 40.5 33.5 32.6 30.3
S.d. 81.1 89.5 89.9 81.6 76.5 64.8 63.3 60.2
Median 16.6 19.3 18.7 194 17.7 16.9 17.2 17.3
Minimum 10 10.1 10.2 10 10 10 10 10
Maximum 693 7455 7892 7782 7896 7072 7323 8008
Sample size 94 98 112 136 161 168 192 238
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Table 2

Testing B convergence hypothesis

Cross Section Nonlinear Least Square

1961-1999 1961-1980 1980-1999
Constant 0.05* 0.046* 0.075*
(0.004) (0.007) (0.009)
B 0.009* 0.009* 0.013*
(0.002) (0.002) (0.003)
Adjusted R-square 0.23 0.12 0.14
Observation 157 157 157

Note: standard error in parentheses. * significant at 5%.
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Table 3

Rank Size Regression, China 1949-1999

Variable Coefficient Variable Coefficient
InA 8.40* Inp -1.08*
(0.11) (0.03)
D, g4 -1.35* D, g4 *Inp 0.021
(0.20) (0.055)
D, 4q, -0.29* D, 46, *Inp 0.003
(0.16) (0.04)
D, g0 -0.53* D, g0 *Inp 0.033
(0.16) (0.041)
D g6 0.85* D ggs*Inp -0.078*
(0.15) (0.037)
D490 1.88* D, g9 *Inp -0.194*
(0.14) (0.036)
D404 2.68* D g9, *Inp -0.286*
(0.14) (0.035)
D400 2.43* D, g9 *Inp -0.216*
(0.14) (0.034)
Observations 2655
Adjusted R-square 0.9

Note: standard error in parentheses. * significant at 5%.
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Table 4

Panel A: Average Decade Transition Matrix in Pre-reform Period (1949-1980)

Upper boundary 0.25 0.5 0.75 1 2 o Exit
0.25 0.3 0.35 0.19 0.04 0 0 0.12
0.5 0.03 0.47 0.27 0.06 0.1 0 0.07
0.75 0.02 0.03 0.46 0.26 0.18 0.02 0.03
1 0 0.05 0.06 0.29 0.46 0.07 0.07
2 0 0.04 0.03 0.03 0.64 0.14 6.12
® 0 0 0.02 0 0.02 0.96 0
Eng 0.44 0.33 0.07 0.06 0.09 0.01
Panel B: Average Decade Transition Matrix in Reform Period (1980-1999)
Upper boundary 0.25 0.5 0.75 1 2 o Exit
0.25 0.49 0.36 0.04 0 0.07 0 0.04
0.5 0.01 0.63 0.21 0.04 0.07 0.02 0.02
0.75 0 0.03 0.71 0.18 0.07 0 0.01
1 0 0.08 0.06 0.78 0.08 0 0
2 0 0.04 0.03 0.05 0.79 0.08 0.01
o 0 0 0 0 0.06 0.94 0
Entry 0.06 0.15 0.25 0.2 0.33 0.01
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Panel A: the case of China

, Table 5
The Rank Order (Single Pareto) Distribution Model

Year Sample PrminML O, Var(Oygg) Bors Var(8gs)  x2(8) GF
size
1949 77 10.008 0.865 0.0097 0.914 0 12.481
1961 176 10.172 0.776 0.0034 0.859 0 36.841
1970 164 10.188 0.803 0.0039 0.875 0 21
1980 208 10.141 0.707 0.0024 0.799 0 60.75
1985 313 10.038 0.638 0.0013 0.737 0 187.927
1990 453 10.168 0.583 0.001 0.679 0 446.89
1994 606 11.95 0.603 0.001 0.702 0 686.574
1999 658 9.985 0.537 0 0.626 0 822.213

Note: upper tail probabilities (1-F(x ?)) are not reported in Table 3 since they are all
substantially less than 0.01 except for the initial year 1949.

Panel B: the case of U.S.

Year Sample Puaa  Om Var(®ygp) Oos Var(Bors) x*@)GF  1-F(x?)
size
1950 112 10.062  1.046 0.0098 1.017 0.0004 16.214 0.039
1960 136 9.961 1.073 0.0085 1.06 0.0004 9.294 0.318
1970 161 9.941 1.131 0.008 1.111 0.0003 9.248 0.322
1980 192 9.946 1.301 0.0101 1.264 0.0003 10.691 0.22
1990 168 9.97 1.321 0.0091 1.295 0.0002 11.75 0.163
2000 238 9.984 1.392 0.0081 1.368 0.0003 6.118 0.634
Note:
Pminmw Unbiased transformation of Maximum Likelihood Estimate of the Lower
bound (see footnote 5).
(i Maximum likelihood estimate of Zipf parameter.

Var( 6y ) Variance of maximum likelihood estimate.

Oors Restricted Least Squares Estimate of Parameter.
Var(8ys) Variance of Restricted Least Squares Estimate.
x 2(8)GF Pearson Goodness of Fit Test (based upon 10 equiprobable cells).

1-F(x %) Upper tail probability of Pearson Goodness of Fit Tes
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Table 6
Double-Pareto Model, the case of China

Year Sample Size a B P\ PMEAN x 2(6) GF

1949 77 0.875 456532.13 2.317 3.46

1961 176 0.78 5451775.2 2.325 3.608

1970 164 0.807 4410943.2 2.3272 3.567

1980 208 1.468 1.7383 3.673 3.731 785.558
(0.156) (0.1526) (0.0492) (0.0592)

1985 313 1.600 1.810 3.836 3.874 1109.588
(0.130) (0.132) (0.037) (0.044)

1990 453 1.794 1.765 4.039 4.034 1590.113
(0.259) (0.122) (0.052) (0.033)

1994 606 1.978 1.940 4.146 4141 2117.663
(0.251) (0.113) (0.043) (0.026)

1999 658 1.980 1.999 4162 4.164 2266.62
(0.217) (0.114) (0.034) (0.026)

Note: standard error in parentheses
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Panel A: City Size Distribution in China

Table 7
Goodness-of fit Test of Log-normal Model

Year Sample size Mean Std Dev Std Error  x%(7) GF 1-F(x 2)
of mean
1949 77 3.46 0.831 0.095 7.805 0.35
1961 176 3.608 0.844 0.064 8.886 0.261
1970 164 3.567 0.877 0.069 16 0.025
1980 208 3.731 0.853 0.059 20.846 0.004
1985 313 3.874 0.779 0.044 11.313 0.126
1990 453 4.034 0.702 0.033 17.6181 0.014
1994 606 4141 0.648 0.026 5.023 0.657
1999 658 4164 0.661 0.026 11.392 0.122
Panel B: City Size Distribution in U.S.
Year Sample Mean Std Dev Std Error of x 2(7) GF
size mean
1950 112 12.4749 0.9126 0.0862 40.1429
1960 136 12.4411 0.8706 0.0747 51.6471
1970 161 12.3909 0.8454 0.0666 64.4037
1980 168 12.2756 0.7547 0.0582 69.2619
1990 192 12.2667 0.7356 0.0531 70.1875
2000 238 12.2298 0.7003 0.0454 90.8235

Note: upper tail probabilities (1-F(x ?)) are not reported in Table 5a since they are all

substantially less than 0.01.
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Table 8

Polarization Test
Comparison Variance Reduction A Diverging B Diverging
Years A/B Test Statistic and Relative to B? Relative to A’
IH. gg:; l;rl:yﬂl Test Upper Tail Test Upper Tail
Statistic Probability Statistic Probability
49/61 0.9710 1.9749 0.8710 9.2695 0.1359
0.5497 7.7241 0.2207 2.3386 0.7544
61/70 0.9248 12.106 0.0509 3.0532 0.7314
0.6945 15.100 0.0199 21.255 0.0020
70/80 1.0168 0.1042 0.9995 2.8196 0.7653
0.3524 1.3958 0.8448 2.4544 0.7312
80/85 1.1990 0.0000 1.0000 44.995 0.0000
0.0740 0.0000 0.9555 44.995 0.0000
85/90 1.2313 0.0000 1.0000 54.121 0.0000
0.0219 0.0000 0.9555 54.121 0.0000
90/94 1.1746 0.0000 1.0000 14.154 0.0245
0.0329 0.0000 0.9519 14.154 0.0267
94/99 0.9619 6.5956 0.3110 0.0000 1.0000
0.6864 6.5956 0.2890 0.0000 0.9008
Notes:

1. Each cell of this column reports the standard variance ratio “F” test (with degrees of freedom
(n,-1, ng-1) followed by its upper tail probability.
2. Columns 3 and 5 report the 1* and 2™ order polarization tests of Anderson (2002), columns 4
and 6 report the corresponding upper tail probabilities. 1* order polarization corresponds to
tails moving further apart, 2" Order Polarization refers to an increased concentration in the

tails.
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Figure 1. Annual Growth Rate and Initial City Size (1961-1999)
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