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1 Introduction

In keeping with the Akerlof (1997) notion of social distance the terminologies of Polarization,

Alienation and Convergence are gaining an ever increasing currency in Economics (Anderson

(2005) provides a limited list of the usage). The terms have to do with the extent to which

agents in identifiable groups Polarize from each other, by finding increasing within group

affinity (Convergence) and decreasing between group affinity (Alienation). As Atkinson

(1998) stresses the phenomena are inherently multi-dimensional so that formal measures

will depend upon aggregated distances in multivariate space between the economic variables

of that agent and those of the rest of society. The trick is to develop simple expedient tests

that capture this type of phenomenon.

Esteban and Ray (1994) (hereafter referred to as ER) and Duclos, Esteban, and Ray

(2004) (hereafter referred to as DER) provided indices which identify the phenomenon in the

mixture of group distributions in a univariate framework. Anderson (2004a) and Anderson

(2004b), in studying the anatomy of polarized states, provided tests (again in a univariate

framework) which explore the anatomical features of polarizing phenomena both in terms

of observable group distributions and in terms of their implications for mixtures of those

distributions. It transpires that polarization is not just simply a case of reduced within

group variances and increased between group distance, it can occur with constant within

group variances and between group locations when the groups exhibit mean and variance

preserving appropriate skewing patterns. However whenever polarization presents itself,

except in one pathological case, it is invariably associated with diminished (or at least not

increased) distributional overlap.

The degree of overlap measures the points of “commonality”, “likeness” or “coherence”

between two groups, the extent to which they do not overlap records an index of the alienation

of the group. It is unlike deprivation in the sense that groups with a surfeit of goods relative

to the rest of society can be considered alienated just as those with a deficit can. It is unlike

the ER and DER definition in that two identical within group economic variable distributions

will yield 0 alienation under the overlap measure but will yield increasing alienation under

the ER and DER measure, because of the within group increased dissociation1.

1Alienation tests have long existed in the econometrics literature, see for example Dhrymes (1970). Typ-

ically, given co-varying vectors y and x of dimension m × 1 and n × 1 respectively with a conformably
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Weitzman (1970) first proposed a nonparametric version of the overlap measure2 for the

one dimensional case where p.d.f’s intersected but once. More generally when two smooth,

continuous distributions f(x, y, z, ..) and g(x, y, z, ..) have multiple intersections, the Overlap

Measure or Index OI we introduce here may be written as:

OI =

∞∫
−∞

∞∫
−∞

∞∫
−∞

...min{f(x, y, z, ...), g(x, y, z, ...)}dxdydz... (1)

It is clear that OI is bounded between 0 and 1 corresponding to no overlap and “complete”

overlap respectively, consequently IA = 1 − OI provides an index of the degree to which

two populations are polarized or alienated. Here discussion will continue in terms of the

univariate case though examples of multivariate situation will be presented.

Deutsch and Silber (1997) first proposed a similar Overlap Index to our nonparametric

approach, and showed its relationship to the Pietra Index and Gini’s Concentration Ratio.

The main contribution of our work here is in showing the limiting distribution of the Overlap

Index for both the parametric and our nonparametric Overlap Index, thereby permitting

inferences. Stine and Heyse (2001) proposed that the unknown density in the Overlap Index

could be estimated by kernel densities. We have refrained from using this method as our

focus is to provide a Overlap Index that is amenable to inferences and hypothesis testing,

since the limiting distribution of the Overlap Index using the kernel density approach is

unknown, but is the subject of future work.

In the following the parametric Overlap Index and its distribution is outlined in Section 2,

Section 3 discusses issues concerning the implementation of the nonparametric version, three

examples illustrating uses of the index are proffered in section 4 and section 5 concludes.

partitioned covariance matrix Σ of the form:

Σ =

[
Σyy Σyx

Σxy Σxx

]

such tests focus on the ratio |Σ|
(|Σyy||Σxx|) and highlight the lack of covariation between y and x rather than

the lack of similarity between the marginal distributions of y and x.
2The Weitzman (1970) overlap measure is of the form, x∗∫

min(x|f(x))

f(x)dx+

max(x|g(x))∫
x∗

g(x)dx


where x∗ is the unique point at which f(x) and g(x) intersect.
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2 The Parametric Overlap Index

Let xf ∈ Xf and xg ∈ Xg, be two random variables, where Xf and Xg ⊂ R denote the

support of the respective random variables. Let their respective continuous probability den-

sity functions be f(xf , θf ) and g(xg, θg), where θf and θg are the respective J × 1 parameter

vectors of the density functions f(., .) and g(., .). Then by the above assumptions,
∂πik(θ

i)

∂θij
,

where k ∈ {1, 2, ..., K + 1} and j ∈ {1, 2, ..., J}, exists. Partitioning the range of xi, where

i ∈ {f, g}, into K + 1 mutually exclusive and exhaustive intervals, defined by K common

partition points (common for both f(xf , θf ) and g(xg, θg)), let πi be the (K + 1)× 1 vector

of true probabilities, with typical elements denoted by πik(θ
i) ≡ πik, where i ∈ {f, g} and

k ∈ {1, 2, ..., K + 1}, which is the true probability of a realization of xi being in partition

k. Then given a sample of size ni, i ∈ {f, g}, drawn from the respective populations, with

each observation denoted as xil, l ∈ {1, 2, ..., ni}, and consistent and asymptotically efficient

estimates of the J × 1 parameter vectors θf and θg, denote π̂ik as the estimator of πik, where

i ∈ {f, g} and k ∈ {1, 2, ..., K}.

Let di be a (K + 1) × 1 vector whose typical k’th element, dik =
√
ni
(
π̂ik−π

i
k√

πik

)
, where

i ∈ {f, g}. Next, let Mi be a (K + 1)× J matrix of rank J , with the (k, j)’th element being
1√
πik

∂πik
∂θij

, where i ∈ {f, g}. Finally, let M′
iMi = Hi, and

Ωi =


1 0 ... 0

0 1 ... 0

: :
. . . :

0 0 ... 1

−


√
πi1√
πi2

:√
πiK+1


[ √

πi1
√
πi2 ...

√
πiK+1

]

Then from Rao (1973) pages 383 and 392, the asymptotic distribution of di may be written

as,

di
a∼ NK+1(0, (MiH−1

i M′
i)
′Ωi(MiH−1

i M′
i)) (2)

Let

B =



√
πi1 0 ... 0

0
√
πi2 ... 0

: :
. . . :

0 0 ...
√
πiK+1


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Then equation (2) can be written as,

√
ni
(
π̂i − πi

) a∼ NK+1(0,Bi(MiH−1
i Mi)

′Ωi(MiH−1
i Mi)B

′
i) (3)

⇒ π̂i
a∼ NK+1

(
πi, (Bi(MiH−1

i Mi)
′Ωi(MiH−1

i Mi)B
′
i)

1

ni

)
(4)

where both πi and π̂i, i ∈ {f, g}, are (K + 1)× 1 vectors. Let i be a (K + 1)× 1 vector of

ones. Then it follows that,

⇒ i′π̂i
a∼ N

(
i′π, (i′Bi(MiH−1

i Mi)
′Ωi(MiH−1

i Mi)B
′
ii)

1

ni

)
(5)

Let π̂min = min{π̂f , π̂g}, and define the estimate of OI as ÔI = i′π̂min. Then from equations

(4) and (5),

ÔI
a∼ N

(
i′πmin, (i′Bmin(MminH−1

minMmin)′Ωmin(MminH−1
minMmin)B′mini)

1

nmin

)
(6)

It is clear from equation (6) that as K → ∞ (but K
nmin → 0), ÔI → OI. Alternatively if

the K partition points are defined by the intersection points of f(.) and g(.) which, given

consistent estimates of θf and θg respectively, can be consistently estimated by the solution

or solutions to f(x∗, θf ) = g(x∗, θg), then ÔI → OI as nmin →∞.

For independently sampled observations in states 1 and 2, changes in the degree of

convergence can be examined by focusing on ∆ÔI = ÔI1 − ÔI2 which, under the null

of no change and with the respective variances defined by equation (6) and written as V1

and V2, will be distributed as:

∆ÔI
a∼ N (0, V1 + V2) (7)

At the expense of some complexity, comparisons of non-independent distributions can be

made in a similar fashion by including the covariances between the two distributions.

3 The Nonparametric Index

For the single dimension case, for K known or predetermined partition points yk, k ∈
{1, .., K} (where for convenience assume that the partition points are in ascending rank
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order, y1 < y2 < ... < yK)3 the Overlap Index may be implemented empirically by:

ÔI =


max

(
nf∑
r=1

I(xfr−yk)
nf

,
ng∑
s=1

I(xgs−yk)
ng

)

−
K∑
k=1

min

(
nf∑
r=1

I(xfr−yk)−I(xfr−yk−1)

nf
,
ng∑
s=1

I(xgs−yk)−I(xgs−yk−1)

ng

)
 (8)

where xfr , r ∈ {1, 2, ..., nf}, corresponds to the realization of observation r of random variable

xf associated with the density function f(.) and xgs, s ∈ {1, 2, ..., ng}, corresponds to the

realization of observation s of random variable xg associated with the density function g(.).

I(.) is an indicator function where I(z) = 1 if z ≤ 0 and is 0 otherwise. In addition, y0 is

chosen such that I(xfr − y0) = I(xgs − y0) = 0, for all r ∈ {1, 2, ..., nf} and s ∈ {1, 2, ..., ng}.
When the samples on xf and xg are independent, the asymptotic distribution of the index is

well defined (See Rao (1973) page 383, result (i)). To see this, first denote as before πi and

π̂i, i ∈ {f, g}, as the (K+ 1)× 1 vector of true and estimated probabilities respectively. The

typical element of π̂i, i ∈ {f, g} is given by the proportion of sample elements falling in the

K + 1 intervals defined by the partition points yk, k ∈ {1, 2, ..., K}. Then the asymptotic

distribution of π̂f is:

π̂f
a∼ NK+1

(
πf ,
(
dg(πf )− πfπf ′

) 1

nf

)
(9)

Similarly for π̂g:

π̂g
a∼ NK+1

(
πg, (dg(πg)− πgπg′) 1

ng

)
(10)

Note that when g(.) is the stochastically dominated distribution, the vector π̂f − π̂g will

alternate in sign with the first element being negative. As before, let π̂min = min{π̂f , π̂g},
and define the estimate of OI as ÔI = i′π̂min. Then the asymptotic distribution of π̂min is,

π̂min a∼ NK+1

(
πmin,

(
dg(πmin)− πminπmin ′) 1

nmin

)
(11)

where nmin alternates with the appropriate sample size deflator nf or ng. The asymptotic

distribution of ÔI is,

ÔI := π̂min a∼ N

(
i′πmin,

(
i′
(
dg(πmin)− πminπmin ′) i

) 1

nmin

)
(12)

3Like the classic Goodness of Fit test, these instruments when employed in comparison tests encounter

the criticism that the tests are inconsistent (Barrett and Donald 2003). The issue really only arises when

too few partitions are chosen as Appendix 1 demonstrates.
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On the other hand, if the researcher is interested in examining the degree of alienation

or polarization between two populations (Anderson 2003, Anderson 2004a, Esteban and

Ray 1994, Duclos, Esteban, and Ray 2004), the appropriate measure should be IA = 1−OI.

Denote ÎA as the estimate of IA, then

ÎA = 1− ÔI = 1− i′π̂min (13)

It is clear that the asymptotic distribution of ÎA is,

ÎA
a∼ N

(
1− i′πmin, i′

((
dg(πmin)− πminπmin ′) 1

nmin

)
i

)
(14)

In the literature on Polarization, it is often of interest to examine the evolution of polariza-

tion across periods or borders. The above result consequently allows for inference. Consider

now two independently sampled observations in states 1 and 2, then the change in the de-

gree of alienation can be examined by focusing on the difference in IA, ∆IA = IA1 − IA2,

where IAm, m ∈ {1, 2}, denote the alienation measure IA in state m. Denoting the estimate

of IAm as ÎAm, and the estimate of ∆IA as ∆ÎA, then under the null of no change in

alienation, ∆ÎA will be distributed as:

∆ÎA
a∼ N

(
0, i′

((
dg(πmin,1)− πmin,1πmin,1′) 1

nmin,1

)
i + i′

((
dg(πmin,2)− πmin,2πmin,2′) 1

nmin,2

)
i

)
(15)

where nmin,1 and nmin,2 are the relevant sample size deflators from states 1 and 2 respectively,

as defined in (11). The asymptotic distribution of ÎA in the parametric case can be similarly

derived.

In practice, the nonparametric multi-dimensional case will soon run into the curse of

dimensionality that bedevils nonparametric estimation, however its implementation simply

demands that the vectors πf , πg and πmin, and π̂f , π̂g and π̂min correspond to the vector-

ized list of cell proportions and probabilities generated by partitions of the support of the

respective underlying random variables. Of course if intersections are to be used in deter-

mining cells, it is no longer a question of estimating intersection points, but one of estimating

intersection functions.
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3.1 Practical Considerations in Implementing the Non-Parametric

Test

Often theory will prescribe the parametric nature of distributions being considered (such

as in example 1) in which case parametric overlap tests provide a useful tool for evaluating

theory. Frequently nonparametric versions of the overlap test will have to be relied upon

in the absence of theoretical guidance. Parametric versions of the index estimates of the

intersection points and the index are at least asymptotically unbiased, but the nonparametric

versions we propose in this paper are not.

There are two sources of bias in the estimate of the nonparametric overlap measure

which work in opposing directions. The first source is the bias induced by estimating the

intersection points4 and is associated with intervals which span the true intersection points,

exaggerating the degree of overlap (hence understating the degree of alienation).

This is best illustrated by considering a simple example with two random variables, xf

and xg, defined on the support of Xf and Xg, where both Xf and Xg ⊂ R. Without loss of

generality, suppose Xf = [x,x] = Xg, in other words the two random variables have common

support. Further suppose the density functions intersect only once at y∗ ∈ (x,x) such that

min{f(xf ), g(xg)} = g(xg) for any xf , xg ∈ [x, y∗), and min{f(xf ), g(xg)} = f(xf ) for any

xf , xg ∈ [y∗,x]. Then the true overlap measure is,

OI =

y∗∫
x

g(xg)dxg +

x∫
y∗

f(xf )dxf (16)

Consider now the estimate of y∗ denoted as ŷ∗ 6= y∗. Without loss of generality, suppose

4Generally the intersection points will not be known, however they could be estimated by considering

kernel estimates of f(x)− g(x) for δ size incremental values of x and, when the sign changed between x and

x+ δx∗, the point at which the functions intersect can be estimated by:

x∗ =
(|f(x+ δ)− g(x+ δ)| × x+ |f(x)− g(x)| × (x+ δ))

(|f(x)− g(x)|+ |f(x+ δ)− g(x+ δ)|)

8



ŷ∗ > y∗. Then the estimate of the Overlap Index is,

ÔI =

ŷ∗∫
x

g(xg)dxg +

x∫
ŷ∗

f(xf )dxf

=

y∗∫
x

g(xg)dxg +

ŷ∗∫
y∗

g(xg)dxg +

x∫
ŷ∗

f(xf )dxf

=

y∗∫
x

g(xg)dxg +

x∫
y∗

f(xf )dxf +

 ŷ∗∫
y∗

g(xg)dxg −
ŷ∗∫
y∗

f(xf )dxf


which then implies that,

ÔI = OI +

 ŷ∗∫
y∗

(
g(xg)− f(xf )

)
dxgdxf

 = OI + Bias+ (17)

So that in so far as g(.) dominate f(.), the bias is positive. It is easy to show that there is a

positive bias when y∗ > ŷ∗ as well. In other words, the overlap measure, ÔI overstates the

true degree of overlap, which in turn imply that the alienation measure, ÎA is understated.

The second source of bias is related to the min{π̂f , π̂g} function, where π̂f and π̂g are

the respective vectors of independent estimates of the probability of being in an interval

under f(.) and g(.), with elements denoted π̂ik, for i ∈ {f, g} and k ∈ {1, 2, ..., K + 1},
and understates the degree of overlap (hence exaggerating the degree of alienation). This

bias derives from the fact that in general for independent random variables π̂fk and π̂gk,

E(π̂fk ) ≥ E(π̂fk |π̂
f
k < π̂gk). Since π̂fk is an unbiased estimator for f(.), the conditional estimator

implicit in the min{., .} function will be downward biased. Generally for independent π̂fk

and π̂gk, with respective p.d.f’s p(π̂fk ) and q(π̂gk), and respective c.d.f’s P (π̂fk ) and Q(π̂gk),

E(π̂fk |π̂
f
k < π̂gk) is given by:

1∫
0

1∫
π̂fk

π̂fkp(π̂
f
k )q(π̂gk)dπ̂

g
kdπ̂

f
k =

1∫
0

π̂fkp(π̂
f
k )
(

1−Q(π̂fk )
)
dπ̂fk

= E(π̂fk )−
1∫

0

π̂fkp(π̂
f
k )Q(π̂fk )dπ̂fk (18)

Since the last term is never negative, the overlap measure will always be biased downward

by this component and the alienation measure exaggerated as a consequence. Appendix 2

reports a small Monte Carlo study examining these separate effects.
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4 Some Examples

This section illustrates the use of both the parametric and nonparametric approach to cal-

culating the Overlap measure with three examples. The first example provides a univariate

parametric application to the issue of divergent or convergent economic growth in Chinese

cities with differing administrative structures. This example highlights how prior economic

or statistical theoretical work can provide guidance as to the appropriate distribution to

use in calculating the Overlap Index. In the absence of this guidance, the researcher would

have to rely on the nonparametric Overlap Index of the latter examples. The second exam-

ple illustrates the ease with which the measure can be obtained in the discrete univariate

case through studying the impact of different family structures on the grade attainments of

youths. The third example demonstrates its use in a continuous multivariate nonparametric

environment, in considering the plight of single parent families and pensioners in the United

Kingdom.

4.1 Example 1: Urban Income Size Distribution between Prefec-

ture and County Level Cities in China

In 1978 China embarked upon a series of Economic Reforms which have had a profound im-

pact on the Chinese economy, particularly on the urban economy and structure. The unique

administrative hierarchical structure (which determines the relevant administrative and ju-

risdictional entity a city is subsumed within) of the Chinese Urban System was constructed

in the command economy period of the 1950s to be compatible with the central planning sys-

tem. Cities were largely of two administrative types; Prefecture level cities which had senior

status and more power and County level cities which had junior level status. Prior to 1978

in the pre-reform period, most state manufacturing industries were located in or around the

political centres which were generally Prefecture level cities, and the growth of investment in

the state manufacturing sector was the main determinant of urban income growth. Conse-

quently, the investment capacity of a city was closely related to its administrative level, with

Prefecture level cities having much greater investment capacity and autonomy than County

level cities. Inevitably a size and income disparity between these two types of cities was

engendered and strict migration controls ensured this hierarchical structure remained stable

in the pre-reform period.

The economic reforms presented challenges to this stability. Generally, the reforms in-

volved political decentralization, economic liberalization, and openness to foreign trade and
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investment, and gradually changed the fundamental sources of urban growth. Firstly po-

litical decentralization delivered more economic power and autonomy to local governments,

together with greater general policy autonomy helped reduce the “power” gap between the

cities with different administrative status. Secondly economic liberalization, through stim-

ulating rapid private sector growth and shrinking of the relative size of the state sector,

favoured the County level cities which were characterized by relatively larger private sector

and a greater dependence on foreign trade and investment. Thirdly, the large state sector

share in Prefecture level cities, with its attendant inflexibilities, presented a distinct disad-

vantage in the transition process, while County level cities having a more malleable structure

were more able to adjust quickly to fit into a market economy environment. The question

then is whether these changes resulted in the urban income size distributions of these two

city types becoming more alike. Following (Anderson and Ge 2009) data on per capita GDP

for Chinese cities in 1990 and 1999 are used for the comparisons.

There are good theoretical reasons for believing that income size distributions are log

normal (Gibrat 1930), however both Pareto and Double Pareto distributions also have a

claim as candidates (See Pareto (1897), Champernowne (1953) and Reed (2001)). Table 1

reports goodness of fit tests and upper tail probabilities for the comparisons using all three

distributions. The evidence for the log normal distribution is compelling since with the

exception of the Prefecture/County mixture in 1990, the log normality specification is never

rejected at the 1% level, whereas it is always rejected for all other specifications at sizes as

low as 0.01%.

Let wp and wc denote income variables for prefecture and county level cities respectively,

each assumed to be normally distributed, wp ∼ N(µp, σp) and wc ∼ N(µc, σc). Without loss

of generality, let σp > σc. In addition, denote δ = µp−µc and σ =
(
σp
σc

)
. Firstly, since there

is theoretical guidance relating the income distribution here, the partitions are defined by

the intersection points of the two density functions. The intersection points for the two log

normal densities are obtained from the solution to the equation,

φ(µp, σp) = φ(µc, σc) (19)

where φ(., .) denote the log normal density function. The solution is just,

µc +
δ ± σ

√
δ2 − (1− σ2) lnσ2

(1− σ2)
(20)

We can then denote the two intersection points as yk ≡ yk(µp, µc, σp, σc), where k ∈ {1, 2}.
Next, from our discussion in section 2, in order to obtain the standard error of the parametric

11



Table 1: Goodness of Fit Tests for Log-Normal, Pareto and Double Pareto Distributions

1990 1999

Log Normal Distribution

All cities 36.9483 (0.0000) 3.9231 (0.8640)

Prefectural 18.2626 (0.0193) 3.0678 (0.9300)

County 12.0877 (0.1473) 9.4637 (0.3047)

Pareto Distribution

All cities 4176.0 (0.0000) 5967.0 (0.0000)

Prefectural 1611.0 (0.0000) 2124.0 (0.0000)

County 2565.0 (0.0000) 3843.0 (0.0000)

Double Pareto Distribution

All Cities 1703.9 (0.0000) 2321.5 (0.0000)

Prefecural 597.9 (0.0000) 637.7 (0.0000)

County 968.8 (0.0000) 1491.9 (0.0000)

Note: Upper Tail probabilities in parenthesis

Prefecture and County level sample sizes in braces.

Overlap Index, we need to calculate the sample counterparts to the elements of the matrix Mi

in equation (2), i ∈ {p, c}, with typical element being 1√
πik

∂πik
∂θj

, where i ∈ {p, c}, k ∈ {1, 2, 3}
and j ∈ {1, 2}, since in the case on hand, the parameters corresponding to the log normal

density are just (µi, σi), i ∈ {p, c}. Next denoting Φ(.) as the log normal c.d.f., and noting

that πik =
yk∫

yk−1

φ(wi)dwi, the formulas for the partials for the respective parameters are,

∂πi1
∂µi

= Φ

(
∂y1

∂µi

)
+
(
E(wi)− µi

) πi1
σi

(21)

∂πi2
∂µi

= Φ

(
∂y2

∂µi

)
− Φ

(
∂y1

∂µi

)
+
(
E(wi)− µi

) πi2
σi

(22)

∂πi3
∂µi

=
(
E(wi)− µi

) πi3
σi
− Φ

(
∂y2

∂µi

)
(23)

and

∂πi1
∂σi

= Φ

(
∂y1

∂σi

)
+

(
E

(
wi − µi
σi

)2

− 1

)
πi1
σi

(24)

∂πi2
∂σi

= Φ

(
∂y2

∂σi

)
− Φ

(
∂y1

∂σi

)
+

(
E

(
wi − µi
σi

)2

− 1

)
πi2
σi

(25)

∂πi3
∂σi

=

(
E

(
wi − µi
σi

)2

− 1

)
πi3
σi
− Φ

(
∂y2

∂σi

)
(26)
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where E(wi) =
yk∫

yk−1

wi φ(wi)

πik
dwi, E

(
wi−µi
σi

)2

=
yk∫

yk−1

(
wi−µi
σi

)2
φ(wi)

πik
dwi, and i ∈ {p, c}. Finally,

note that when µp 6= µc and σ2 = 1, the unique intersection point is µp+µc
2

.

Table 2: 1990−1999 log Means and Variances, Growth Rates and Overlap Indices
Prefecture County

Panel (Restricted) Sample

Mean: Log Per Capita Incomes (1990,1999) 8.0285 8.6759 7.3368 8.0809

Variance: Log Per Capita Incomes (1990,1999) 0.3027 0.3434 0.1791 0.3310

Average Annual Growth Rates 0.0719 0.0827

Overlap Index, OI (1990, 1999) (0.3968 , 0.3898)

N(0,1) Test for Differences in (Growth Rates, OI) (2.3279 , -0.2622)

Full Sample

Mean Log Per Capita Incomes (1990,1999) 8.0242 8.5662 7.3325 8.0840

Variance: Log Per Capita Incomes (1990,1999) 0.3030 0.4020 0.1769 0.3192

Average Annual Growth Rates 0.0602 0.0835

Overlap Index, OI (1990, 1999) (0.3973, 0.4167)

N(0,1) Test for Difference in (Growth Rates, OI) (6.6238, 0.6452)

Note: For the test of differences, the Z statistic is reported.

Incomes are denominated in Renminbi (RMB).

Table 2 presents the logarithmic means and variances, growth rates, Overlap Indices and

Overlap Index Comparisons for County versus Prefecture level cities for 1990 and 1999. The

data strongly support the hypothesis that the growth rate in the County level urban income

distribution is greater than that of the Prefecture level urban income distribution. Further

the results for both the panel and full data set support this view as well. However the full

data Overlap Index (based upon integrals of maximum likelihood estimated log normals)

does not admit the same inference. It should be noted that both the difference in growth

rates test and the convergence test (Based on ∆ÔI of equation (7)) on the full sample have

accommodated for the between period covariances induced by the partial panel nature of

the data (For details of how the accommodation is made see Anderson (2003)). In the case

of the panel sample, the Overlap Index records a small decline largely due to the variance in

the stochastically dominated County level distribution growing so rapidly, that is implicitly

the poorer County level cities are being left behind in the growth race. In the case of the

full sample, the Overlap Index records a small but statistically insignificant increase, thus

in both cases a null hypothesis of non-convergence could not be rejected. It is interesting

13



to note that while both the means and variances of Prefecture and County level cities are

closer together in 1999 than they are in 1990, the degree of likeness in terms of the overlap

of the distributions has not changed significantly.

4.2 Example 2: The Effect of Changes in Custody Law on Child

Educational Attainment of Single Parent Families

The effect on educational attainment of different types of parental arrangements lay at the

heart of the inter-generational income relationship. Leo (2008) studied these effects with

respect to single and intact parent families within the context of changes in the custody

laws in the United States, and found that family types have a significant impact on a child’s

educational achievement. Here we illustrate instead the polarizing effect that family type

has on the children of single parent families in comparison to children of intact families over

three census decades of 1970 to 1990. First, we define children of parents who have either

divorced or separated as endogenously single and will so refer to them in the rest of the

example. A simple model of grade attainment, where a student of age t who started school

(grade 1) at age t∗ and has a probability p of graduating to the next grade level, predicts

that grade attainment in the population of students will have a mean of 1 + p(t − t∗) and

a variance of p(1 − p)(t − t∗). Assuming p to be a function of family type and different for

children of endogenously single and intact parent families, attainment of children of different

family types will diverge in the mean but increase in variance with age. The Overlap Index

provides an ideal indicator of whether attainments by family type are diverging or converging

in a more general sense.

Throughout the 1970s and 1980s, states in the United States continuously changed divorce

and custody laws, directly affecting the fortunes of children in Endogenously Single parent

family situations. A new trend in child custody dispute resolution emerged in the early 1980s

in the United States, where previous maternal preference since the 1950s were rescinded in

favor of one without bias, coupled with a gradual trend towards statutory leanings toward

joint custody awards in custody dispute resolutions. This is exemplified by the fact that

before 1980, only 4 states acknowledged joint custody as a possible arrangement in custody

awards. However by 1990, only 14 states had not incorporated joint custody. The force of

this statutory amendment may be noted from the surge in joint custody awards in California

(from 2.2% in 1979 to 13% in 1981 (Maccoby and Mnookin 1994)), and Wisconsin (from

2.2% in 1980-81 to 14.2% in 1991-92 (Brown, Marygold, and Cancian 1997)).
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The following analysis draws on data from the Integrated Public Use Microsample Series

(IPUMS) of the decennial Census for the decades of 1970 to 1990. The proportion of children

of each family type, age group (15 to 18 years of age) and census year, at each level of edu-

cational attainment, average (coded) grade attainments5 and standard deviations, together

with the asymptotically normal difference in means test (the null of common “family type”

variances is always rejected, so the standard difference in means test is inappropriate) for

the years 1970 to 1990 are reported in Table 3. For all three years, as predicted the means

and variances grow with age. Further, note the fall in the value of the test statistic for

each age group between the 1980s and 1990s cohorts. Superficially, there does seem to be

a narrowing of the educational attainment gap over the years. In fact in tests not reported

here, it was found that the difference in means across the family types (intact versus endoge-

nously single), narrowed significantly between 1980 and 1990 relative to that between 1970

and 1980.

Table 4: Alienation Indices (IA = 1−OV ) and Tests by across Family Structure and Years

Alientation Index

Year Age 15 Age 16 Age 17 Age 18

IA1970 0.0774 0.0978 0.1113 0.1248

(0.0041) (0.0045) (0.0067) (0.0081)

IA1980 0.0629 0.0662 0.1039 0.1098

(0.0029) (0.0029) (0.0047) (0.0054)

IA1990 0.0296 0.0487 0.0615 0.0713

(0.0022) (0.0033) (0.0036) (0.0044)

IA1970 − IA1980 2.9053 5.9185 0.90478 1.5495

[0.0018] [0] [0.1828] [0.0606]

IA1980 − IA1990 9.3524 3.99 7.1264 5.5333

[0] [0] [0] [0]

(IA1970 − IA1980)−
(IA1980 − IA1990)

-3.086 2.0451 -3.4689 -1.9515

[0.9990] [0.0204] [0.9997] [0.9745]

Note: Standard errors in parenthesis.

P-values in brackets.

Table 4 provides the alienation (ÎA = 1 − ÔI) comparisons between the two family

structures across the age groups from 1970 and 1990. From the reported Alienation Indices,

5The IPUMS codes for educational attainment are as follows: 1 if preschool or no education; 2 if grades

1 to 4; 3 if grades 5 to 8; 4 if grade 9; 5 if grade 10; 6 if grade 11; 7 if grade 12; 8 if 1 to 3 years of college; 9

if more than 4 years of college.
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although there is still significant evidence of alienation, notice the gradual fall in the Alien-

ation Index across the three decades. Next, examining the differences of the indices across

the years, note that the narrowing of the attainment gap is significant across all the adjacent

years. Further, notice the significant improvement between 1980 and 1990, compared to the

improvement between 1970 and 1980. If we can construe the rate of change between 1970

and 1980 as a trend effect, this change in the Alienation Index between the 1980 and 1990

is suggestive of the possibility that it could have been due to the change in Custodial Laws

in the 1980s.

4.3 Example 3: The Effect of Anti-Poverty Policies on Single Par-

ent and Pensioner Households in the United Kingdom

Single Parent and Pensioner households have constituted a significant component of the

relative poverty calculation in the United Kingdom and have been targeted sub-populations

for public policy. It is significant that poverty level targets were expressed in relative (the

proportion of agents experiencing incomes less than some specified proportion of median

income) rather than absolute (the proportion of agents experiencing incomes less than some

specified proportion of a needs based income measure) terms and reflects the recent6 popular

notion that poverty is a relative concept (see Hills (2001) and Hills (2002))7. Indeed measures

6This view is not new viz:

“..By necessaries I understand, not only the commodities which are indispensably necessary for

the support of life, but whatever the custom of the country renders it indecent for creditable

people, even the lowest order, to be without.” Smith (1976)

Similarly Ferguson (1767) states,

“The necessary of life is a vague and relative term: it is one thing in the opinion of the savage;

another in that of the polished citizen: it has a reference to the fancy and to the habits of

living.”

7Reducing the number of children in relative poverty has been a policy target of the British Government

since 1998, and the children living in single parent households are a significant component of the calculation.

Even after child poverty reductions had been achieved in 2002/3, children of single parents constituted over

40% of poor children (Brewer, Goodman, Myck, Shaw, and Shephard (2004)) but less than a quarter of all

children. Concern over pensioners was expressed earlier. Their relative poverty peaked in the late 1980s and

declined and stabilized during the late 1990s onwards as the group benefited from improvements in Minimum

Income Guarantees and the Basic State Pension. In fact both groups experienced steady declines in absolute

poverty throughout the 1990’s while trends in relative poverty rates have not been so obvious.
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of the relative poverty of subgroups are an expression of how aspects of the subgroup income

distribution differ from that of the rest of the population, summarized by the population

median. While this falls short of measuring subgroup alienation (differences between the

income distributions of a subgroup and its complement), it is very much in that spirit.

Indeed if the policy objective is to make the subgroup and its complement more “alike”,

measures of alienation are the appropriate comparison tool.

Evaluation of the success (or otherwise) of anti-poverty policies in the U.K. has been

clouded by controversy over the recent abandonment of some of the comparison instru-

ments, specifically the “after housing cost” income measure (Brewer, Goodman, Myck, Shaw,

and Shephard 2004). Poverty measure calculations had been based upon both before and

after housing costs income measures, an acknowledgement of the concern that housing ex-

penditures do not reflect economic opportunity costs in the sense that other consumption

expenditures do. This issue is particularly pertinent in the case of pensioners and single

parents. A large portion of pensioners own their own homes and the nominal expenditures

on the property clearly underestimate the welfare gains from inhabiting the property. A

large portion of single parents inhabit properties in the social rented sector where the rents

have been set with little regard to housing quality or the current market. The presumption

has been that the distinction materially effects various welfare and poverty calculations and

it would be interesting to compare the individual measures with the consequences of consid-

ering the joint impact of after housing cost incomes and housing costs. That is to say, does

the distinction alter the extent to which the groups are alienated from the rest of society?

Incomes are calculated from the Family Resources Survey. U.K. Poverty measure cal-

culations are based upon “equivalized” concepts using the McClements (1977) equivalence

scale, expressing household incomes as the amount that a childless couple would require to

enjoy the same standard of living (see Brewer, Goodman, Myck, Shaw, and Shephard (2004)

for details). Incomes before housing costs and incomes net of housing costs are reported as

well as housing costs. Table 5 provide summary statistics for single parent and non-single

parent households as well as for pensioner and non-pensioner household breakdowns. It is no

surprise to learn that single parent and pensioner average and median incomes are less than

those of the rest of society (both before and after housing costs). Somewhat more striking

is the notion that equivalized housing costs are higher for single parent families than those

of the rest of society but lower for pensioners than those of the rest of society. The latter

difference is easily rationalized since nominal housing expenses are recorded (rather than

imputed rents) and a large portion of senior citizens are owner occupiers with no mortgage
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obligations. The former difference is somewhat surprising, especially since the differences are

strongly statistically significant, perhaps it is related to economies of scale in housing costs.

One interesting feature of both pensioner and single parent groups is that the variability

of housing costs is relatively stable over time when compared to the rest of the population

where the variability of housing costs appears to be growing.

Table 6, panels A and B report alienation indices (where the comparison is made between

single versus non-single parent households, and pensioner versus non-pensioner households)

based upon income before and after housing cost deductions respectively, while panel C

reports alienation indices based upon the joint distribution of after housing cost incomes

and housing costs. In the single variate case reported in panels A and B, two alienation

indices are calculated, the first is based upon an arbitrary partition of the space into 10

equi-probable intervals over the combined sample and is denoted as IAN , while the second

is based upon estimated intersection points (using the Epanechnikov kernel. For details see

Silverman (1986)) denoted as IAE
8. In order to examine changes in the degree of alienation,

each panel also reports the test for differences against year 2002, reporting both the test

statistic and the P-value for the change in IAN . The close correspondence of IAN and IAE

is worthy of note. Finally, panel C reports the multivariate equivalents of IAN together with

tests of significance between differences against year 2002 in IAN
9.

From panels A and B of table 6, it is evident that Single Parent households are more

alienated than Pensioner households based on both IAN and IAE indices, which in turn

implies that income distributions are more unlike the rest of the population both before and

after housing costs have been accounted for. It is also evident that Single Parent alienation

has been significantly reduced over time (both before and after housing costs) whereas little

change of substance has occurred with respect to Pensioners except for the after housing

cost index of panel B which indicates insignificant reductions in alienation in the 1996-2002

period together with a significant return to the 1996 level of alienation in 2002. The after

housing cost alienation index of panel B is always larger than the before housing cost index

8Although IAN is computationally convenient since it involves the arbitrarily determined partitions, as

discussed in the appendix A.1, these arbitrary partitions are the source of potential inconsistency resulting

in false null asymptotically. Consequently IAE , which involves the estimation of the intersection points, is

recommended theoretically. However, as shown in Lemma 1 of appendix A.1, and the Monte Carlo study of

appendix A.2, this problem is not grave.
9In the multivariate case, intersections of the density functions are themselves functions, and its estimation

is the subject of further research.
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Table 5: Summary Statistics

Panel A: Household “Equivalized” Incomes (Before Housing Costs)

Single Parent Household Non-Single Parent Household

Year Mean Median σ n Mean Median σ n

1996 186.39 163.43 89.28 2116 298.99 249.13 238.06 28099

1998 212.49 179.51 206.06 1901 330.13 271.67 289.65 25145

2000 240.67 208.65 132.98 2050 368.49 299.85 369.73 25737

2002 254.71 223.79 117.49 1252 378.22 318.76 309.85 16383

Pensioner Household Non Pensioner Household

Year Mean Median σ n Mean Median σ n

1996 232.15 192.82 160.62 7216 309.6 261.12 248.05 22999

1998 252.98 207.58 190.38 6541 343.84 286.43 307.33 20505

2000 283.62 235.59 212.49 6823 383.61 315.17 392.27 20964

2002 292.88 252.89 177.99 3733 391.32 332.13 325.81 12518

Panel B: Household “Equivalized” Incomes (After Housing Costs)

Single Parent Household Non-Single Parent Household

Year Mean Median σ n Mean Median σ n

1996 144.38 114.54 88.59 2098 262.64 219.26 239.22 28240

1998 166.62 128.29 210.37 1880 289.31 238.03 288.83 25295

2000 194.58 152.89 134.42 2030 323.93 264.88 373.07 25982

2002 209.94 169.57 121.48 1238 337.58 286.09 307.84 15126

Pensioner Household Non Pensioner Household

Year Mean Median σ n Mean Median σ n

1996 214.02 167.91 170.37 7199 267.15 226.06 248.95 23135

1998 234.3 184.24 201.05 6527 295.48 245.58 305.76 20650

2000 266.27 215 226.43 6807 329.9 271.56 395.37 21213

2002 275.73 229.08 186.71 3720 343.28 295.08 324.02 12644

Panel C: Household “Equivalized” Housing Costs

Single Parent Household Non-Single Parent Household

Year Mean Median σ n Mean Median σ n

1996 43.69 38.09 33.22 2166 34.72 29.73 39.68 28099

1998 48.15 41.75 37.54 1901 38.69 32.98 45.8 25145

2000 48.44 44.38 35.96 2050 40.79 34.99 51.79 25737

2002 47.64 44.53 33.05 1252 37.16 32.26 45.68 14999

Pensioner Household Non Pensioner Household

Year Mean Median σ n Mean Median σ n

1996 18.88 9.46 34.11 7216 40.51 34.19 39.43 22999

1998 19.28 8.81 35.92 6541 45.76 38.6 46.14 20505

2000 18.06 8.66 38.28 6823 48.94 41.48 52.1 20964

2002 18.29 8.17 39.89 3733 43.83 37.91 44.66 14999

Note: “Equivalized” Incomes in denominated £.
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Table 6: Alienation Indices and Tests
Panel A: Household “Equivalized” Income (Before Housing Costs)

Single Parent Households Pensioners

Year IAN IAE ∆ over 2002

(Z,F (Z))

IAN IAE ∆ over 2002

(Z,F (Z))

1996 0.3602 0.3562 -3.2208 0.0006 0.2423 0.2599 0.1081 0.5430

1998 0.3585 0.3631 -3.0606 0.0010 0.2540 0.2699 -1.0719 0.1419

2000 0.3041 0.3063 0.0107 0.5403 0.2377 0.2553 0.5446 0.7070

2002 0.3043 0.3015 0.2431 0.2597

Panel B: Household “Equivalized” Income (After Housing Costs)

Single Parent Households Pensioners

Year IAN IAE ∆ over 2002

(Z,F (Z))

IAN IAE ∆ over 2002

(Z,F (Z))

1996 0.4075 0.4166 -4.6946 0.0000 0.2453 0.2341 -0.2215 0.4123

1998 0.3949 0.4022 -3.9038 0.0000 0.2301 0.2099 1.3028 0.9037

2000 0.3274 0.3372 -0.1857 0.4264 0.2218 0.2034 2.1657 0.9848

2002 0.3241 0.3322 0.2432 0.2303

Panel C: Joint Household “Equivalized” Income (After Housing

Costs and Housing Costs)

Single Parent Households Pensioners

Year IAN IAE ∆ over 2002

(Z,F (Z))

IAN IAE ∆ over 2002

(Z,F (Z))

1996 0.4943 -1.2252 0.1103 0.3337 1.9696 0.9756

1998 0.5013 -1.5921 0.0557 0.3344 1.8748 0.9696

2000 0.4523 1.0160 0.8452 0.3345 1.8779 0.9698

2002 0.4712 0.3554

Note: “Equivalized” income denominated in £.

of panel A for Single Parents, but this is not the case for pensioners. This is largely the result

of the nature of housing costs experienced by the two groups as mentioned before. From

table 5, panels A and C, it may be seen that mean (and median) Single Parent and Pensioner

before housing cost incomes are always lower than that of the rest of the population, however

while equivalized Single Parent housing costs are greater than the rest of the population,

Pensioner housing costs are less. Thus when housing costs are removed Single Parent and

non-Single Parent income distributions will be further apart and if anything Pensioner and

Non-Pensioner Income distributions will be closer together.

A different picture emerges when the joint distributions of after housing costs incomes
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and housing costs are considered, reported in panel C of table 6. Firstly, alienation is

more substantial for both Single Parents and Pensioner households. There is no significant

reduction in Single Parent alienation and, at the 5% level, a significant increase in Pensioner

Alienation. The latter phenomenon is due to the fact that measured pensioner housing

expenses are becoming more unlike the rest of society in that they are moving relatively

lower. This is not the case for Single Parent housing costs which, in terms of the median,

are becoming relatively higher.

5 Conclusion

The notion of distributional overlap has been exploited in introducing some simple nonpara-

metric and parametric, uni-dimensional and multi-dimensional indices and their tests for

considering alienation and convergence issues, in both discrete and continuous random vari-

able paradigms. The properties of the nonparametric indices, in terms of the biases inherent

in the techniques have been assessed in a simple Monte Carlo framework (Their parametric

counterparts have more attractive features, in terms of the absence of asymptotic bias, en-

dowed by a parametric structure). Based upon the extent to which two distributions overlap,

this paper shows that the indices and tests are easy to implement in a multi-dimensional or

multiple characteristic setting. Application of the tests was exemplified in three quite diverse

situations: in considering the convergence of the income distributions of different city types

in China; in considering the effects of family law reform on the educational attainment of

children in single parent families and in comparing multivariate characteristic distributions

of family types in the United Kingdom. In each case the indices and tests proved an effective

instrument of comparison. Application of these tests need not be confined to the present

framework, they could be readily applied wherever there is a need to assess the general de-

gree of commonality or dissimilarity of two distributions. For example they could be used

as a specification test of experimental design in the random assignment literature and as an

empirical tool in the assortative pairing literatures.
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A Appendix

A.1 On the Inconsistency of Point-Wise Comparison Tests

Many tests have been proposed for examining the equality (or otherwise) between two func-

tions over a range by examining their proximity at a sequence of points within that range.

Tests based upon the structure of Pearsons Goodness of Fit test including modifications and

extensions of it (Anderson (1994); Andrews (1988)), Contingency Table, and Homogeneity

of Parallel samples tests, can be interpreted this way (Rao 1973), Lorenz and Generalized

Lorenz Dominance tests (Beach and Davidson 1983), Stochastic Dominance Tests in the

Poverty, Inequality and Finance Literature (Anderson (1996); Davidson and Duclos (1997);

Davidson and Duclos (2000)) are also all members of this class. These tests are often crit-

icized for their potential inconsistency, which results in the failure to reject a false null

asymptotically, consequently making the case for less powerful but nonetheless consistent

tests (for example Kolmogorov-Smirnov type tests, see Anderson (2001)).

Generally for two smooth and continuous functions f(x) and g(x), defined for x ∈ [a, b],

based upon a random sample (or samples) of a size that grow uniformly with the population

size T , the above class of tests can be represented by:

P = H(T )
K+1∑
k=1

 k∑
j=1

I(j)

yj∫
yj−1

(f(x)− g(x)) dx


2

Gk +O

(
1

T

)
(A-1)

where as before yj, j = {1, .., K} represent the K mutually exhaustive ordered partitions

(such that y1 < y2 < ... < yK), and together with y0 = a and yK+1 = b fully partitions

the support [a, b] into K + 1 intervals. Gk is a function of the appropriate elements of the

inverse of the covariance matrix of integrals of differences that appear in the test and are zero

otherwise, and I(j) is an indicator function. The elements Gk are O(1) asymptotically, and

H(T ) the sample size factor, is monotonically increasing and at least O(T ). For example, in

goodness of fit tests, f(x) corresponds to an empirical density function, g(x) to the theoretical

density under the null. In the parallel samples tests, f(x) and g(x) are two empirical densities

being compared, in both cases I(j) = 1 for j = k, 0 otherwise (H(T ) = T in the former and
TfTg
Tf+Tg

in the latter where Tf and Tg are the sample sizes from the respective distributions). In

First Order Stochastic Dominance (and Lorenz) tests, f(x) and g(x) correspond to empirical

density functions (or monotonic transformations of them) with I(j) = 1 for all j. In higher

order dominance tests, f(x) and g(x) correspond to higher order integrals (Anderson (1996))

or incomplete moment estimates (Davidson and Duclos 2000) again with I(j) = 1.
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Given the sample size factor is H(T ) and the covariance factors are O(1), inconsistency

of P (when f(x) 6= g(x) except for a finite set of intersection points) requires that:

yk∫
yk−1

(f(x)− g(x)) dx = 0,∀yk, k = {1, ..., K + 1} (A-2)

The partition points yk chosen by the investigator are the source of potential inconsistency.

In the case of goodness of fit tests, advice abounds as to what and how many yk’s should be

chosen (See, for example, Andrews (1988) and Rayner and Best (1989)) but it largely focuses

on power issues and ignores the potential inconsistency problem. The following lemma shows

that, if the points at which f(x) and g(x) intersect are finite (M) in number, then there

are a finite (K) number of partition points that generate the inconsistency property and

furthermore K < M .

Lemma 1 For smooth, continuous functions f(x) and g(x) defined on [a, b], let there be M

ordered interior intersection points zm, such that f(x) = g(x) when x = zm, m = {1, 2, ..,M}
and f(x) 6= g(x) otherwise, except possibly at x = a and x = b. Then the partitions, yk

k = {1, 2, ..., K}, satisfying equation (A-2) number at most K where K < M .

Proof. Suppose without loss of generality, f(x) > g(x) for x ∈ [a, z1), then from the smooth-

ness and continuity assumptions for f(x) and g(x), |f(x) − g(x)| > 0 for x ∈ (zm, zm+1),

m = 1, ....,M − 1. Since:
y(≤z1)∫
a

(f(x)− g(x)) dx > 0 (A-3)

there can be no partition point in [a, z1), otherwise a term of O(1) remains in the extreme

left tail of the region [a, b]. Similarly, since:

(−1)M
b∫

y(≥zM )

(f(x)− g(x)) dx > 0 (A-4)

there can be no partition point in (zM , b], otherwise a term of O(1) remains at the extreme

right tail of the region [a, b]. Finally, since:

(−1)m
yU∫
yL

(f(x)− g(x)) dx > 0,∀yL < yU , yL, yU ∈ (zm, zm+1) (A-5)
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there can be at most one partition point in (zm, zm+1) for m = {1, 2, ...,M − 1}, otherwise a

term of O(1) remains within the region (zm, zm+1). Hence there are at most M − 1 partition

points satisfying (A-2).

Though the result is “simple”, its practical implications are significant. For test incon-

sistency the set of points satisfying equation (A-2), or a subset of them, have to be chosen

exclusively. The number of points, located on an infinite space, has been shown to be finite

and bounded from above by the number of intersections of f(x) and g(x) so that, in the

assumed circumstances, the probability of choosing them is for all purposes arbitrarily close

to zero. When distributions being investigated are uni-modular, the number of intersection

points is likely to be small, (unlikely to be more than 4 for example), so that partition

schemes need not be extensive for the inconsistency issue to be of no consequence. Multi-

modality of the underlying distributions engendered by mixtures will increase the order of

the problem slightly but again the degree of multi-modality itself needs to be extensive and

the null and alternatives have to be close to present any real prospect of a problem. The

result also highlights when inconsistency can arise. If for example f(x) = g(x) over some

substantive range of x (as would occur if a policy transferred income from people immedi-

ately above some poverty line to people immediately below it whilst leaving the rest of the

income distribution unaltered) then an injudicious selection of yk’s, specifically not having

a yk at the poverty line, will engender inconsistency when comparisons are made over the

whole distribution. Clearly the yk’s need to be located more intensely within the range over

which curves potentially differ. Evidently smoothness and continuity properties are crucial

since when distribution functions exhibit substantial mass at a point the potential for in-

consistency increases. In short when distributions are smooth and continuous it takes very

special circumstances for inconsistency in these tests to arise, either a freakish coincidence

or else something that can readily be spotted in advance of testing.

A.2 The Monte Carlo Study

Independent samples were drawn on f(x) v N(0, 1) and g(x) v N(0, 2.25). The intersection

points yk, k ∈ {1, 2}, for these two distributions is given by ±1.2 ×
√

1.25× ln(2.25) =

±1.2082 and the exact value of the Alienation Index, IA, for these two distributions is

0.1936. Let f̂ be the kernel density estimator of f(x), and denoting the window width by h,

then the bias up to O(h2) of the kernel estimator f̂ is given in Pagan and Ullah (1999) by:

Bias(f̂) =
h2

2
µ2
d2f(x)

dx2
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where µ2 is the second moment of the kernel variate and for this case the second derivative

of N(0, σ2) is given by:
1

σ3
√

2π
e−

x2

2σ2

(
x2

σ2
− 1

)
(A-6)

In the region of the intersection in the example, and thus the bias, is positive for f(.) and

negative for g(.), which will result in negative bias in the estimate of the lower intersection

point and positive bias in the estimate of the upper intersection point.

Any bias in the estimates of the intersection points will always engender negative bias in

ÎA since it always engenders positive bias in the estimate of the Overlap Index, ÔI. To ex-

plore this issue three experiments were performed based upon sample sizes of 1000, 5000 and

10000 drawn from each distribution. The intersection points were estimated using Epanech-

nikov kernel estimates of f(x)− g(x) employing the optimal window width recommended in

Silverman (1986) formula 3.31. The magnitude of the increments of x considered was based

upon the range of the combined sample divided by 100. The Alienation Index was calcu-

lated using both the known values and the estimated values of the intersection points. This

exercise was replicated 200 times. Goodness of fit tests for normality based upon 10 equi-

probable cells were conducted for both the intersection point estimates and true Alienation

Index based upon known and estimated intersection points. The index appears to retain

normality in these circumstances as the following table, reporting some simple simulations,

attests. The expected bias in the intersection point estimates is apparent, however the bias it

engenders in ÎA is not large because it is swamped by the upward bias due to the conditional

probability issue discussed above.

A problem with this approach is that estimation of intersection points becomes precarious

in small samples or in the tails of distributions. For the above example when sample sizes

were reduced to 500, 200 and 100, more than 2 intersection points were detected 1.5%, 5%

and 17.5% of the time respectively. An alternative approach is to note that the index retains

it’s distributional properties for an arbitrarily defined set of partition points yk. The ÎA

will be biased downwards since the Overlap Index will be overstated and, when used in

a testing environment it does run the risk of substantial power loss and ultimately, given

an inopportune choice of partition, of being an inconsistent test. These dangers can be

mitigated by choosing a larger number of partition points, yk, than anticipated intersection

points.

Two environments were investigated. The first, where distributions intersect once (loca-

tion/mean shift), is based upon two distributions N(a, 1) and N(b, 1) where d = b − a was
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Table A.1
n = 1000 Mean σ Normality

Test, χ2(8)

Pr(Upper Tail)

Lower Intersection Point, y1 -1.2412 0.1526 7.8 0.4532

Upper Intersection Point, y2 1.2535 0.1522 3.8 0.8747

IA(Intersection Points known) 0.1916 0.0202 9.6 0.2942

ÎA(Intersection Points estimated) 0.1954 0.0189 8.7 0.3682

n = 5000

Lower Intersection Point, y1 -1.2271 0.0738 4.7 0.7891

Upper Intersection Point, y2 1.2194 0.0709 4.7 0.7891

IA(Intersection Points known) 0.1941 0.009 5.2 0.736

ÎA(Intersection Points estimated) 0.195 0.0094 7.4 0.4942

n = 10000

Lower Intersection Point, y1 -1.2206 0.0569 6.0 0.6472

Upper Intersection Point, y2 1.2188 0.0604 4.3 0.8291

IA(Intersection Points known) 0.194 0.006 7.4 0.4942

ÎA(Intersection Points estimated) 0.1945 0.0058 17.8 0.0228

varied from 0.1 to 1.5 in increments of 0.2. The second, where distributions intersect twice

(scale/variance shift), is based upon two distributions N(0, 1) and N(0, 1 + d) where d was

varied in the same fashion. The distributions were sampled with sizes (T ) ranging from 500

to 2500 in increments of 500 and Alienation Indices (ÎA) calculated based upon K partitions

with K set at 5, 10 and 20. Partition points were determined by equi-probable partitioning

of the combined sample in one instance and, in order to separate out the two sources of bias,

by relocating the nearest partition point to the true intersection point in the second instance.

Each experiment was replicated a thousand times and the average value and variance of the

index calculated for that experiment. After some data analysis, a parsimonious response

surface (Hendry 1983) representation of the bias relationships was specified as:

ln

(
ÎAi
IAi

)
= β0 + β1

1

Ti
+ β2

1

Ki

+ β3
1

K2
i

+ β4
di
Ti

+ β5
1

KiTi
+ β6

di
Ki

+β7 ln (AIi) + β8 (ln (AIi))
2 + εi (A-7)

where Ti represents the sample size, Ki represents the number of partitions, ÎAi corresponds

to the estimated index, IAi corresponds to the true value of the index, di represents the

incremental changes in the respective environments (note that di is the location shift vari-

able in table A.2 and scale shift variable in table A.3) listed above and “i” corresponds to

the i’th experiment. Since ÎA = IA + Bias, equation (A-7) can be seen as describing an
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approximation to the Bias
IA

ratio as a function of the various conditions of the experiment.

Bias attributable to ignoring the intersection points can be studied by analysing the change

in equation (A-7) when ÎA is measured ignoring the intersection points, and when ÎA is

measured by incorporating the known intersection points in the partition structure. The

three set of parameter estimates are reported in Tables A.2 and A.3 for location shift effects

and scale shift effects respectively. Generally the spanned intersection point effect appears

to have a much smaller impact than that due to the conditional expectation being smaller

than the unconditional expectation. Small sample effects can be assessed by considering
β1

T
+ β4d

T
+ β5

KT
. At the sample means these are -0.0816 and 0.00209 respectively for the

conditional expectation induced relative bias and intersection point induced relative bias in

the location model, and they are correspondingly 0.0433 and 0.00267 in the scale model.

Table A.2: Mean Shift Effect (One Intersection Point)

Variable Sample Means Intersection

Points Ignored

Intersection

Points Included

Intersection

Point Effect

Constant 0.1284 0.1388 -0.0105

(0.0611) (0.0658) (0.0070)

1/Sample Size 0.0009 216.8960 212.5517 4.3443

(26.0316) (28.0470) (2.9750)

1/# Partitions 0.1167 -2.2010 -2.1870 -0.0140

(0.6532) (0.7037) (0.0746)

(1/# Partitions)2 0.0175 3.1780 3.6792 -0.5012

(2.3851) (2.5698) (0.2726)

Location Shift/Sample Size 0.0007 -158.0895 -155.5545 -2.5350

(20.5525) (22.1437) (2.3488)

(1/# Partitions)(1/Sample

Size)

0.0001 -267.2096 -275.8518 8.6422

(152.5599) (164.3717) (17.4351)

Location Shift/# Partitions 0.0933 1.1986 1.1283 0.0703

(0.1904) (0.2052) (0.0218)

ln(IA) -1.4408 0.1987 0.2097 -0.0110

(0.0545) (0.0587) (0.0062)

(ln(IA))2 2.7483 0.0965 0.0982 -0.0016

(0.0114) (0.0123) (0.0013)

R2 0.8940 0.8750 0.4720

σ 0.0610 0.0650 0.0070

†Standard errors are in parenthesis.

Asymptotic bias may be studied by allowing T →∞, in this case the increase in alienation
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Table A.3: Variance Shift Effect
Variable Sample Means Intersection

Points Ignored

Intersection

Points Included

Intersection

Point Effect

Constant 0.1024 0.1481 -0.0457

(0.0827) (0.0839) (0.0091)

1/Sample Size 0.0009 357.8138 334.8077 23.0062

(40.9516) (41.5672) (4.5181)

1/# Partitions 0.1167 -4.3911 -3.7243 -0.6669

(0.7039) (0.7145) (0.0777)

(1/# Partitions)2 0.0175 5.0696 4.6225 0.4471

(2.3321) (2.3672) (0.2573)

Scale Shift/Sample Size 0.0007 -145.1569 -136.9142 -8.2427

(19.9354) (20.2351) (2.1994)

(1/# Partitions)(1/Sample

Size)

0.0001 -363.9128 -331.4417 -32.4710

(149.1667) (151.4089) (16.4571)

Scale Shift/# Partitions 0.0933 1.5124 1.2696 0.2428

(0.1841) (0.1869) (0.0203)

ln(IA) -1.5357 0.1605 0.2152 -0.0547

(0.0785) (0.0797) (0.0087)

(ln(IA))2 2.8313 0.0880 0.0974 -0.0094

(0.0168) (0.0170) (0.0018)

R2 0.8640 0.8450 0.8010

σ 0.0590 0.0600 0.0070

†Standard errors are in parenthesis.

brought about by increases in location and/or scale parameters increases the relative bias due

to conditional expectation effect, but reduces the negative bias due to the intersection point

effect, and increasing the number of partitions dilutes the impact of increased alienation on

the biases. The marginal effect of increasing the number of partitions is given by − β2

K2 −
β3

K3 − β6d
K2 , assuming d = 1 and K = 10 it can be seen that the effect is positive for both

location and scale problems and is positive for both the conditional expectation effect and

the intersection point effect10. The latter phenomenon is not surprising, smaller intervals

generally imply smaller approximation biases at the intersection points. If K is also allowed

to go to infinity (but at a slower rate than T ) then we observe from the significance of the

intercept and ln(IA) terms (the only ones that remain as 1
T

and 1
K
→ 0) that relative bias

10The calculations in the location equations are 0.003228 and 0.000335 for the conditional expectation

effect and intersection point effect respectively, and for the scale equations they are respectively 0.02368 and

0.003347.
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is present asymptotically. The absolute magnitude of the bias may be obtained by noticing

that Bias =
[
exp

(
ln
(
ÎA
IA

))
− 1
]
× IA and these biases are reported in Table A.4. As may

be seen the total bias is always positive and “U” shaped since the bias due to conditional

rather than marginal probabilities swamps the intersection bias. Naturally the magnitude

of intersection related bias increases with the number of intersections.

Table A.4: Approximate Absolute Asymptotic Bias (Large K)

IA Total Bias Total Bias Intersection Bias Intersection Bias

(Location Shift) (Scale Shift) (Location Shift) (Scale Shift)

0.1 0.0183 0.0199 0.0006 0.0030

0.2 0.0117 0.0144 0.0006 0.0036

0.3 0.0087 0.0110 0.0001 0.0020

0.4 0.0109 0.0117 -0.0007 -0.0014

0.5 0.0185 0.0167 -0.0018 -0.0062

0.6 0.0312 0.0260 -0.0032 -0.0121

0.7 0.0489 0.0394 -0.0047 -0.0192

0.8 0.0711 0.0568 -0.0065 -0.0272

0.9 0.0977 0.0778 -0.0084 -0.0360
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