
On the Nature of Econometrics and
Economic Data

1. Purpose of an Empirical Analysis

A. Description: What’s the relationship between Y and X in
a given population?

 What’s the relationship between grades in Eco2408F and
attributes such as grade in intermediate statistics, gender,
completion of an advanced UG course in econometrics,
obesity, etc.



B. Prediction: Estimate the relationship between Y and X;
then use it to predict the value of Y0 given X0.

 Use last year’s student data to predict your grade in Eco2408
this year.

C. Estimation of a Causal Relationship: Find a relationship
between Y and X that is invariant to manipulation of one or
more of the components in X.

 By how much would the class average increase if we
changed the entrance rules and required all MA students to
complete an advanced UG course in econometrics? What
would happen to a student’s grade if we could change, ceteris
paribus, the student’s sex?



2. Specification Issues: Economic Components

A. Dependent variable: What’s the right choice of Y?

 Suppose you are interested in measuring the teaching output
of professors. How should you do it? Teaching evaluations?
Or some measure of student performance: Performance in
subsequent courses? Successful completion of degree?
Starting salary?



B. Independent variables: What’s the right choice for X?

 It depends on your purpose. Suppose you decide that you
want to look at the relationship between Ysoft-drink
consumption and some X variables.
 If you are only interested in descriptive statistics, then

the choice of X doesn’t matter. The joint relationship
between Y and and just about any X can be analyzed and
reported.

 Previous studies and experience often lead us to identify
a set of explanatory variables that have proven useful in
the past. It makes sense to include them and other
variables you think useful in your study. However, if
you want to predict, then it is important to use variables
that are available to you at the time of prediction (there is
no point next month’s weather to predict next month’s



soft-drink consumption); you also want to find a
relationship that is “stable” so that it will hold out of
sample. For example if you have a short sample and
horizon, you may decide to include temperature alone as
a predictor. With a longer sample and horizon, you may
decide to include also relative prices, income, and
population. Note, however, that stability considerations
tend to favour smaller models.

 To estimate a causal relationship by OLS, you either
need to be lucky or very smart. If you are lucky, you
have experimental data (real or "natural"). Otherwise, to
convince economists that you have uncovered a causal
relationship, you need to have a good theory that
explains the relationship. So a forecasting model that
uses temperature and ignores relative prices and income
isn’t going to be convincing (the forecasting model says
that price doesn’t matter so you can charge as much as



you want without affecting demand–economists aren’t
going to believe this). At the very least, you’ll probably
have to consider as a possibility–but not necessarily your
final and preferred choice–a larger model to convince
readers that what you’ve estimated isn’t just an artifact
of leaving out some other important explanatory model.
Part of the larger model could be terms allowing for
heterogeneity in coefficients across difference possible
subpopulations. Of course, anything you do will be
necessary but not sufficient to convince readers of a
stable causal relationship. If history is a guide, you’ll
have to wait until lots of other researchers (both
theoretical and empirical) have taken a kick at the can
and lots of new data are found that support your results.



3. Economics/Statistical Specification Issues

A. Functional Form

 Economics rarely has much to say about functional form (an
exception is the CAPM which predicts that expected returns
on risky assets are linear in the asset’s "beta"). I include a
brief discussion of functional form here because I need to
talk about f(X) before I can talk about the substantive (as
opposed to purely statistical) issues involved in the joint
distribution of X and u. From statistics, there are two
obvious candidates for f(X) that may be of interest. In both
cases, assume Y and X have finite variances.
 Suppose we are interested in predicting Y and restrict

attention to linear functions of X. For  ∈ RK, find
∗  arg minEY − X2. If we write Y  X∗  u∗,



then by construction we have covu∗,X  0, for all
 ∈ RK. If our interest is in descriptive statistics, and
we’ve decided to restrict attention to linear relationships
between Y and X, then ∗ is usually the coefficient
vector of interest. It is called “the coefficient of the Best
Linear Predictor (BLP) of Y given X”, and it is under
very general conditions the object that OLS tries to
estimate. If we are interested in forecasting, then ∗ will
still be of interest, as long as the joint distribution of
Y0,X0 is the same as the joint distribution of Y,X.
Note: If we are interested in causal relationships then we
may be interested in another coefficient vector. The
classic example is demand and supply. Suppose
QD  a  bp  uD, and QS  c  dp  uS. If we regress
Q on p, OLS will estimate the coefficient of the BLP, but
 ≠ b and  ≠ d!



 If we are interested in predicting Y and consider any
(measurable and square-integrable) function fX, then it
is natural to pay special attention to the one that solves
f∘X  arg minEY − fX2. The solution is
f∘X  EY|X. If we write Y  f∘X  u∘, then by
construction covu∘, fX  0, for all (measurable,
square-integrable) fX. The conditional expectation
function (and analogues such as the conditional median
function) is of natural interest if our purpose is
descriptive statistics. With the usual caveat about
stability, it is also a sensible objective to uncover if our
interest is in forecasting. Again, it may or may not be of
interest if we are after causal relationships.

 The distinction between linear and nonlinear models is
not as sharp as may first appear. The model fX  X
is linear in parameters. By suitably defining the



components of X to include functions (polynomials,
logarithms, etc.) of some smaller set of underlying
explanatory variables, we can do a pretty good job of
approximating the conditional expectation function. In
most applications, we try to exploit nonlinearities in this
fashion. In the last two decades, there has been an
explosion of interest in estimating nonlinear objects
directly, rather than working with a finite-dimensional
approximation. Unfortunately, we will have little to say
about such nonparametric estimation methods in this
course.

 Unless it involves an affine transformation (such as a
change in units), transformations of the dependent
variable matter because they determine the object of
interest. Choosing to use wages or its logarithm as the
dependent variable has the same character as choosing



wages or hours worked as the object to investigate! Are
we interested in estimating derivatives or elasticities?
They’re not the same object! Because economics rarely
provides any guidance on whether or not it is more
interesting to explain, say, the level or the logarithm of
the dependent variable, this choice is often made on
statistical grounds. For some transformation of the
dependent variable, such as the log or square root of
wages, a linear relationship with X may be a better
approximation to the conditional expectation, or the
errors may have “better” statistical properties. It such a
case, it makes sense to conduct the empirical analysis
using such a transformation, but always translate results
into objects (such as derivatives or elasticities at a point)
that have a familiar economic interpretation.



B. First-order Statistical Properties

 First-order restrictions on the joint distribution of u and X
identify the object of statistical inference. It’s important to
make sure that this is also the object of economic interest! In
what follows, I assume that we are restricting attention to a
linear relationship Y  X  u. Think of identifying
assumptions as "assertions"–they can’t be tested.
Overidentifying assumptions are testable.
 If we assume covX,u  0, then we identify  as the

coefficient of the BLP of Y given X to be the object of
interest.



 If we assume Eu|X  0, then we implicitly identify the
conditional expection of Y given X as the object of
interest, AND we claim that it is linear (which is
testable). A stronger, but easier to interpret assumption is
that u,X are independent. Dependence between u,X
could come from not measuring all the variables that
affect Y, or because variations in u may affect X directly.

 If we assume the existence of some instrument Z such
that covZ,u  0 and CovZ,X has full column rank,
then we identify as the coefficient vector  of interest to
be the one that generates residuals uncorrelated to Z (and
we make the testable assumption that Z is systematically
related to the regressors X. Such assumptions are
commonly made by economists in attempting to uncover
causal relationships from observational data.



C. Second-order statistical properties

 In most economic applications, second-order statistical
properties are “nuisance” assumptions. They have no
economic importance. They matter for efficiency and correct
inference, but NOT for the interpretation of which  is the
object of interest.
 If we write Euu ′  2I, then we are making

assumptions that will matter for our statistical analysis,
i.e. how to estimate  efficiently and how to make
correct inferences about .

 In finance, the second-order moments are sometimes the
focus of attention (eg. ARCH models). That means we
should re-interpret the dependent variable Y as the volatility
(variance) in sections A-C above.



4. Types of Data

A. Important for first-order statistical properties

 Experimental (controlled, randomized treatments, “natural”)
vs. nonexperimental or observational data.
 This dichotomy is very important for estimating causal

effects. Experimental data allow for empirical discovery
of “laws”. The experiment can be constructed to
guarantee that our statistical assertions (u is independent
of X) are true. Some argue that it is not possible to
identify causal effects from observational data. All agree
that it’s hard to do! But experimental data are not a
panacea. Although more common than in the past,
democratic societies place strong limits on the ability of
researchers to “role the dice” in a way that affects



people’s lives, so lots of questions cannot be investigated
with experiments. Moreover, experiment findings have
no basis for extrapolation to other situations. Theories
provide a way to extrapolate findings and to use
observational data to identify structural relations (those
that are invariant to interventions in the variables X).
Economists have developed a rich set of tools, based on
instrumental variables to identify causal relationships
using theory and observational data. But economic
theories are controversial and often not well-enough
developed to convince skeptics. Many econometric
studies can make no claim beyond descriptive statistics.



B. Important for second-order statistical properties (joint
distribution of Yt  Xt  ut, t  1. .T)

 Cross-sectional data: t indexes households, firms,
individuals, etc.
 With random sampling, then us is independent of ut for

s ≠ t. The order of the observations doesn’t matter (we
could shuffle the data and not lose any information).
This leads to the most straightforward set of econometric
issues and is the focus of most of the Wooldridge book.
Often T is very large, so standard large-sample theory
provides a useful framework for approximate inference.
This is the sort of data often assumed to be encountered
in applied micro (labour, public, health, etc.).



 Time-series data: t indexes time.
 In time-series applications, the data may be measured at

annual, quarterly, monthly, weekly, or daily frequency.
In financial applications, the data may even be measured
“tick-by-tick”. Special econometric problems arise in
time-series applications. Dynamics may enter the
regression–X may contain lags of the dependent variable
as well as lags of explanatory variables. Alternatively,
dynamics may be introduced through a rich correlation
structure for the errors. Note that including lags of Y in
X means that we have to be careful about what sort of
conditioning we use in defining u.



C. Important for both first and second-order statistical
properties
 Pooled cross-sections

 A collection of cross-sections for different years, if each
year is collected from a random sample, allows one to
investigate some dynamics and to consider first-order
models that cannot be identified from a single
cross-section. For example, are the coefficents stable
over time or do they display a noticeable trend?

 Panel data
 A collection of time-series for each micro observation

will have dependencies that must be addressed for proper
inference. More important, it allows us to use the same
agent in a different time period as a “control” in
calculating the effect of a change in X.



D. Special features of the support of the data

 As a first approximation, special features of the explanatory
data X introduce no special statistical issues, as long as we
believe that the parameter  is truly a constant for all
observations. In practice, however, we notice that estimates
of  vary from sample to sample. In trying to reconcile this
variation (or in thinking about whether to use your estimated
 for an out-of-sample forecast or policy prediction), it is
useful to think of each individual observation as having it’s
own coefficient  t. Then OLS will estimate some sort of
‘average’ of the  t in your sample. If your data only contain
observations with small values for X, then this average may
be quite different than the  t relevant if X is large (for
example, the effect of increasing the legal minimum age to
leave school may be very different for weak students than for
strong students). Think about the source of variation in your



sample X. Is it across people? Is it across time? Is it for the
same person across time? Each of these sources of variation
in X may pick up a different weighted average of  t as the
object of interest. With one sample, there is not much you
can do about this, but you should be aware of it, especially in
interpreting variations across samples and in thinking about
using your results out of sample.

 Features of the support of Y matter a good deal in building an
appropriate statistical model, and point to different
econometric strategies.
 Multivariate (vs univariate) data refers to the situation

where the basic observation of interest is a vector rather
than a scalar (eg. expenditure shares on food, clothing,
rent, transportation, etc.)

 Indicator or dummy variables take on only the values 0
or 1. They are used to indicate the absence or presence



of an attribute (eg. employed, own a car, university
degree, etc.)

 Count data refers to the situation where the variable can
take on only non-negative integer values (eg., number of
assets owned, or number of children).

 Truncated data refers to the case where the support of the
data is a strict subinterval of the real line (eg. wages
must be strictly positive). Usually, truncated also is used
to mean that some data has been suppressed (eg. we
don’t observe wages of non-workers).

 Censored data refers to the case where the support of the
data is a strict subinterval of the real line, but the density
has a “spike” at one or more endpoints. For example, we
measure Y  Y∗ if Y∗  0, and Y  0 if Y∗ ≤ 0. An
application might be expenditure on cigarettes (a large
fraction of the sample will report zero expenditures).



 Limited dependent variable refers to any situation where
the support of Y is not the real line (including the four
examples above). Unfortunately, we will not be
covering limited dependent variables in this course.


