
Heteroskedasticity
Recall the assumption of the CLNM
S1: y  X  u
S2: X has full column rank
S3: Eu|X  0
S4: Euu ′|X  2In

S5: u |X~MVN

We have also discussed some reasons why these
assumptions may be violated, and some potential solutions
for deviations from this list. Below, I give a partial list and
mention a few things that we won’t have time to cover.



Deviations from S1:

 OLS estimates the coefficients of the BLP. But, in general,
we would expect the regression function to be nonlinear.

 We can introduce some nonlinearity into our model by
adding nonlinear transformations (such as xj

2) or splines
(linear or cubic, with or without continuity restrictions,
implemented by introducing dummy variables) but stay
within the linear in parameters framework.

 The logical extension of these ideas is nonparametric
regression, i.e. estimate Ey|X ≡ fx directly. This is
logically satisfying but suffers from the curse of
dimensionality: we need enormous amounts of data once the
number of regressors exceeds around 3. We won’t be
studying nonparametrics in this course.



 Related to nonlinearity is the idea that the parameters may
vary with observations as functions of their regressors or
other observable characteristics. In practice, we can deal
with variation that depends on observables by building
models of the form

 ik  k  xik ∑Dikjkj

where Dikj are dummy variables.



Deviations from S2:

 If X doesn’t have full column rank, then there is no unique
solution to the normal equations. Although


 is not unique,

the OLS fitted values and residuals, y and u, are unique.

 If the columns of X are singular "in population", then no
sample could identify  and we should think seriously about
redefining the model (eg. the dummy variable trap).

 If the singularity of X is a problem for our sample (not in
population), then we could either focus on the l.c. of  that
are estimable, or bring in extraneous information (restricted
OLS).

 Older texts used to talk about "multicollinearity" as somehow
a kind of violation of S2. It’s not.



Deviations from S3:

 This is probably the most critical assumption.

 We can weaken the mean independence assumption Eu|X
to a "zero covariance assumption" Exiui  0. This makes
finite sample results difficult to obtain, but we can still obtain
consistency (i.e. show that the OLS estimator


 converges to

the coefficient vector of the BLP). However, in many
settings, we are not interested in the BLP of yi given xi

 If we have "left out variables", then OLS will not estimate
the partial response of yi to xi, but the sum of that response
and an indirect proxy for the effects of left out variables.

 We’ll see other reasons for correlation between xi and ui and
some solutions later in the lectures.



Deviations from S5:

 We can still do OLS and our standard tests, but base our
results on asymptotic theory. But we lose optimality
properties for the OLS estimator and for our testing
procedures.

 We can try to improve on the "first order"asymptotics by
using computer intensive methods such as the bootstrap for
better finite sample approximations. (We won’t cover this or
anything below).

 If the errors are not conditionally normal, but we know their
distribution, then we can do ML. This often gives us good
large sample properties, but without a finite sample theory.

 With a known distribution, we can use analytical approx-
imations (Edgeworth or saddlepoint), or Bayesian methods.



Deviations from S4:

 There are many important applications which involve
violations of the conditional scalar covariance matrix
assumption, i.e. where we replace

S4: Euu ′|X  2In with S4
′

: Euu ′|X  
where  is a positive definite matrix.

 If  is only positive semidefinite, then formally it is
equivalent to having fewer observations but imposing linear
restrictions on the coefficient vector.

 Leading applications include time series, systems of
equations, panel data models and

 heteroskedasticity
  diag i

2  i
2  0



:Consequences of nonscalar covariance matrix for OLS
a) Sampling Distribution
 From S1 and S2


    Lu

 From S1-S3
E

|X    E




 Adding S4 ′

V

|X  LVuL ′  X ′X−1X ′XX ′X−1

 Adding S5

|X~MVN, X ′X−1X ′XX ′X−1



b) Optimality Properties

 OLS is no longer Gauss-Markov

 OLS is no longer MVUE

 If we use the OLS covariance matrix, 
2
X ′X−1, then t and

F statistics for linear hypotheses will not have the correct
size. Test procedures that use a "consistent" estimator of
V

|X will have the correct asymptotic size, but they are no

longer optimal. For example, the (asymptotic) t-test of
H0 :  i  0 vs H0 :  i  0 based on


 i

s.e. 

 i

is no longer UMP (uniformly most powerful).



:Heteroskedasticity consistence covariance matrix
estimator (HCCME) aka "Heteroskedasticity Robust" CME

 With   diag i
2, we can write

X ′X ∑
i1

n

 i
2xi

′xi

∑
i1

n

Eui
2xi

′xi|X

(Note that both right and left hand sides live in KxK)

 If we knew  i
2 we could use the first row on the rhs.

 Otherwise, if we saw the disturbances, we can use fact that
rhs (divided by sample size) is a matrix of sample means and
invoke a LLN to estimate it.



 White (1980) [and earlier Eicker (1967)] showed that we can
replace the unobserved disturbances with the OLS residuals
in the argument above, i.e.

p lim 1
n X ′X − 1

n X ′X  0

where X ′X ∑
i1

n
ui

2xi
′xi

Rk: Notice that standard OLS uses X ′X  
2∑ i1

n xi
′xi

 Moreover (using my abuse of notation)

|X~aN, X ′X−1X ′XX ′X−1

so the usual tests are asymptotically correct if we use this
new estimator for

V

|X  X ′X−1X ′XX ′X−1



 Wald test for the general linear hypothesis R  r is derived
just as before. Under the null,

R

|X~aNr,RV


|XR ′

Therefore, by the continuous mapping theorem

R

 − r

′
RV


|XR ′

−1
R

 − r ~a2q

 Notice that this tests statistic will NOT reduce to an
expression involving restricted and unrestricted sum of
squares.

 There are other HCCMEs that appear to have better finite
sample properties that the White’s.



 Should we always use a HCCME?

 If no heteroskedasticity, then we can get exact
distribution use standard OLS estimator for covariance
matrix.

 If the heteroskedasticity is "small", then we can do worse
by trying to estimate it than by acting as if it is zero
(usual bias vs. variance tradeoff).

 For large sample sizes, it makes sense to report only
standard erors and test statistics that use a HCCME
(assuming that we don’t have to worry about correlations
in disturbances across observations).



Testing for heteroskedasticity

 If we saw the disturbances, then we could build skedastic
models

ui
2  0  1z1  2z2   pzp   i

Note that zi1
p and xi1

k may have some elements in
common, but there may be some variables that appear only in
the population regression function (PRF) Ey|X or the
skedastic function.

 The null hypothesis of homoskedasticity reduces to
H0 : 1  2    p  0

We could test this using a variety of asymptotic tests.



 In practice, we can use the OLS residuals in place of the
unobserved disturbances, and model

ui
2  0  1z1  2z2   pzp   i

then construct the test statistics
Ru2

2 /p
1 − Ru2

2 /n − p − 1
~aFp,n − p − 1

or LM  nRu2
2 ~a2p

Rk: LM is the LM test suggested by Breusch and Pagan
(1979), but with a covariance matrix that is robust to
deviations from normality.

 Breusch and Pagan showed that the form of the LM test was
the same if we used skedastic functions of the form

Eui
2|Z  h0  1z1  2z2   pzp



where h is any C1 function (because a first order Taylor
series is good enough for local alternatives, the form of the
test statistic doesn’t vary with h).

 Examples (choices for z):
 Choose some or all of the components of xi (the latter is

the original Breusch-Pagan test)
 Include all linearly independent levels and

cross-products of the xi. This gives us the White (1980)
test. This is a test of whether V


|X  2X ′X

 If zi  
y i,

y i
2 we get another common test.

 Tests for heteroskedasticity detect deviations from
S1-S4(S5). If we reject the null, it could be due to
misspecification of the PRF. For example, there could be
neglected nonlinearity.



 It is straightforward to take residuals from a regression and
running our skedastic regressions as tests. In STATA, after a
regression, we can use the postestimation commands to
perform our tests automatically (you should do it both ways
and compare to make sure you understand what the package
is doing):
 we can use the option estat hettest for the BP test.

NOTE: the default option assumes normal residuals.
Using the option "iid" gives the nR2 form of the LM test.
Using the option "fstat" gives the robust form of the
F-test. The default uses all the regressors. You can use
a subset or add some.

 STATA also implements a test that uses ranks of the
regressors as the z variables (szroeter)



Efficient estimation with heteroskedasticity

 Suppose Euu ′|X  2diaghi where hi is known, i.e., we
know the form of the heteroskedasticity, perhaps up to some
constant. This is a bit more general than the case where we
know diag i

2. It’s easy to see that we can transform the
model into a form where S1-S4 hold, and then use our
previous results.

 Consider a typical observation. We have the model
yi  xi  ui

where Eui|X  0 and Euiuj|X   i
2 ij, where  ij denotes

the so-called Kronecker delta function:  ij  1 if i  j, and 0
otherwise.



 If we multiply each observation by a different constant, say
ci, we obtain

ciyi  cixi  ciui

 yi
∗  xi

∗  ui
∗

where Eui
∗|X  ciEui|X  0 and

Eui
∗uj
∗|X  cicjEuiuj|X  ci

2 i
2 ij.

 So scaling each observation by its own constant doesn’t
destroy the zero conditional mean property or the lack of
correlation across distinct observations. But it does change
the conditional variance.



 If we pick ci
2 to be proportional to  i

−2, we can induce
homoskedasticity. Given our assumption above, this says
that the model

yi

hi
 xi

hi
  ui

hi

 yi
∗  xi

∗  ui
∗

satisfies S1-S4(S5).

 The GM (MLE) estimator is OLS on the transformed data.

 Notice that even if xi contains an intercept, xi
∗ won’t. So R2

may not make much sense.



In matrix notation
 Suppose we have the model

y  X  u
where Eu|X  0 and Euu ′|X  2H where H is known.

 Take any matrix H−1/2 that satisfies H−1/2HH−1/2 ′  In.
Premultiplying yields

H−1/2y  H−1/2X  H−1/2u 

y∗  X∗  u∗

where Eu∗|X  0 and Eu∗u∗′|X  2In. So the
transformed model satisfies S1-S4.

 OLS on the transformed model is GM:

GM  X∗′X∗−1X∗′y∗

 X ′H−1X−1X ′H−1y





GM is also called the Generalized Least Squares (GLS)
estimator, denoted


GLS

 If u|X~MVN, then u∗|X∗~MVN so the transformed data
satisfy S1-S5.

 The OLS estimator of 2 and test procedures are exactly
what we’ve already seen, except that we replace y,X with
y∗,X∗



Weighted Least Squares

 If we express the GLS estimator with heteroskedasticity on
an observation by observation basis, we get


GLS  arg min

∈K
∑yi

∗ − xi
∗2

 arg min
∈K
∑wiyi − xi2

where wi  hi
−1.

 The GLS estimator with heteroskedasticity belongs to the
class of weighted least squares estimators.

 The optimal weights are proportional to the inverse of the
variance of the disturbance ui. Observations with large
variances are given small weights; observations with small
variances are given large weights.



Feasible GLS
 Suppose we believe the skedastic function is of the form

Eui
2|Z  2 exp1z1  2z2   pzp

 If we knew the parameters 1,2,,p we’d do GLS.
 Feasible GLS (FGLS) replaces the unknown parameter

vector  with a consistent estimator.
Rks:
 We can include variables in Z that appear in the PRF plus

variables that are irrelevant to the mean but matter for the
variance.

 For testing purposes, it’s OK to use a linear skedastic
function (local alternatives are linear), but a model for the
skedastic function used in FGLS must ensure that the
estimated variances are positive.



Strategy:
1. Regress lnu 2 on z1 to zp. Call the fitted values gi.
2. Act as if hi  expgi and follow the procedure for GLS.
Rks:
 Because we only have to get something proportional to hi we

don’t have to worry about scaling our prediction as in W6.42.
 If we have any observations with u  0, we’ll have to

estimate the skedastic function by nonlinear OLS, or replace
all the zeros with a "small number".



Properties of Feasible GLS estimator
p lim n 


GLS −


FGLS  0

 Therefore,

FGLS has the same asymptotic distribution as the

GM estimator; we don’t lose anything (according to the
standard first order asymptotic theory) from estimating the
skedastic function!

A summing up

 Using OLS and a HCCME allows us to do correct inference,
asymptotically. But we give up efficiency. Also, in practice,
the HCCME estimator may not work well if there is "heavy"
heteroskedasticity.

 Building a model for the scedastic function allows us to gain
efficiency. But it’s a lot of work given our interest is in the



PRF. And there’s not much economic theory available to us
for second moment specifications. It’s easy to get the
scedastic function wrong which could make matters worse
than using OLS.

 I recommend if specification tests point to lots of evidence of
heteroskedasticity, then try to model it. Use specification
tests on the transformed model to see how well you do in
removing it.

 After an attempt to clean up the heteroskedasticity, use
HCCME to get consistent standard errors and correctly sized
tests.



Some Tips
 If you build a model for Eui

2, use hi  maxEui
2, 10−3

2


. My constant 10−3 is pretty arbitrary, but the message is
don’t let any single observation have too much weight.

 Tests for heteroskedasticity can pick up other deviations from
the CLM. We’ll develop other specification tests in the next
few lectures. Try to see which direction the tests are pointing
toward before you decide whether the problem is
heteroskedasticity, functional form, or serial correlation (or
some combination).

 If OLS and GLS estimates are too different then something
went wrong. Typically, it means that you have a violation of
the assumption that Eu|Z  0, i.e. either you have missed
important nonlinearities or you have included variables in
your scedastic function that should have been in the PRF.


