Eco220 Exercise Set 9/10.

In the first five questions let $y_i = \gamma x_i + e_i$, i = 1,...,n where y_i and x_i are observed variables, γ is an unobserved parameter and the e_i i = 1,...,n are unobserved random variables with a zero mean and variance $\sigma^2 > 0$ for all i.

- 1) Derive the ordinary least squares estimator of γ .
- 2) Stating any necessary additional assumptions prove that the estimator in 1) is unbiased and derive its variance.
- 3) Stating any further additional assumptions derive a test statistic and its critical value for $H_0 \gamma \ge 1$ against $H_1 \gamma < 1$.
- 4) The following set of data (y_i, x_i) corresponds to logarithms of expenditures on a commodity and income of individual i respectively so that in the above model γ corresponds to the income elasticity of demand for that comodity. Test the hypothesis that income elasticity of demand is elastic (>1) against the alternative that it is inelastic. Set the size of the test at .05.

i	1	2	3	4	5	6	7	8	9	10
y _i	2	3	2	4	1	3	3	2	1	4
x _i	1.1	1.4	1	2.2	.9	1.5	1.6	1.2	.8	2.1

5). When $\Sigma x_i \neq 0$ an alternative to the OLS estimator you derived in question 1 is given by $\Sigma y_i/\Sigma x_i$, show that this is unbiased and derive its variance. Comment on its efficiency relative to your OLS estimator (hint $\Sigma x_i^2 > n^{-1}(\Sigma x_i)^2$).

In the next set of questions let $y_i = \zeta + \gamma x_i + e_i$, i = 1,...,n where y_i and x_i are observed variables, ζ and γ are unobserved parameters and the e_i i = 1,...,n are unobserved random variables with a zero mean and variance $\sigma^2 > 0$ for all i.

- 6) Derive the ordinary least squares estimators of ζ and γ .
- 7) Stating any necessary additional assumptions prove that the estimators in 6) are unbiased and derive their variances.
- 8) Stating any further additional assumptions derive a test statistic and its critical value for $H_0 \gamma > 1$ against $H_1 \gamma < 1$.
- 9) Stating any further additional assumptions derive a test statistic and its critical value for $H_0 \zeta \ge 0$ against $H_1 \zeta < 0$.
- 10) Using the data in question 4) test the same hypothesis for this model.

11). Given n observations on the pairs (y_i, x_i) i = 1,...,n with means y and x, three alternative representations of the OLS estimator of the slope of a regression function follow, show that they are all the same estimator.

$$\frac{\sum_{i=1}^{n} (x_i - x) y_i}{\sum_{i=1}^{n} (x_i - x) x_i} \quad ; \quad \frac{\sum_{i=1}^{n} (y_i - y) x_i}{\sum_{i=1}^{n} (x_i - x)^2} \quad ; \quad \frac{\sum_{i=1}^{n} x_i y_i - nxy}{\sum_{i=1}^{n} x_i^2 - nx^2}$$

12. 20 identical wheat fields were randomly allocated to one of three fertilizer treatments, the yields (in bushels) in the fields were as follows:

Fields under treatment 1: 40, 42, 39, 39, 37, 43

Fields under treatment 2: 43, 44, 44, 45, 44, 42, 46.

Fields under treatment 3: 35, 37, 35, 38, 38, 32, 36.

Test the hypothesis that the different treatments had no distinguishable effects at the 5% level.

13 For the following data test H_0 : $\beta \ge 0$ against H_1 : $\beta < 0$ in the regression $Y_i = \alpha + \beta X_i + e_i$, state clearly what assumptions underlay your testing procedure.

Y _i	22	30	25	26	21	26
X _i	10	16	13	14	10	12

14. A regression of the log of earnings (Y) ON AGE (X_1) , AGE² (X_2) and the number of children (X_3) yielded the following results (standard errors of the parameter estimates in brackets): For women with no schooling

$$Y = 1.8294 + 0.1063 X_1, -0.0010 X_2 - 0.0562 X_3$$

(0.6006) (0.3389) (0.0003) (0.0494)
 $n=93, R^2 = .2123$

For women with post graduate experience

$$Y = 3.4360 + 0.2226 X_1, -0.0023 X_2 - 0.2267 X_3$$

(1.6348) (0.0485) (0.0006) (0.0668)
 $n=228, R^2 = .1632$

Comment on the significance of the impact of children on the respective earnings profiles and the joint significance of the explanatory variables X_1 , X_2 and X_3 . What do the slopes of the earnings profiles look like at age 25 for the two groups of women? When would you expect their earnings capacity to peak?