
Random Variables 
 
Generally the object of an investigators interest is not necessarily the action in the sample 
space but rather some function of it.  Technically a real valued function or mapping 
whose domain is the sample space is called a “Random Variable,” it is these that are 
usually the object of an investigators attention.  If the mapping is onto a finite (or 
countably infinite) set of points on the real line, the random variable is said to be discrete.  
Otherwise, if the mapping is onto an uncountably infinite set of points, the random 
variable is continuous.  This distinction is a nuisance because the nature of thing which 
describes the probabilistic behaviour of the random variable, called a Probability 
Density Function (denoted here as f(x) and referred to as a p.d.f.), will differ according 
to whether the variable is discrete or continuous.   
 
In the case of a discrete random variable X, with typical outcome xi, (it shall be assumed 
for convenience that the xi’s are ordered with I from smallest to largest), the probability 
density function f(xi) is simply the sum of the probabilities of outcomes in the sample 
space which result in the random variable taking on the value xi.  Basically the p.d.f. for a 
Discrete Random Variable obeys 2 rules: 
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In the discrete case f(xi) = P(X=xi), in the continuous case it is not possible to interpret 
the p.d.f. in the same way indeed, since X can take on any one of an uncountably infinite 
set of values, we cannot give it a subscript “i”.  when the random variable X is 
continuous with typical value x, the probability density function f(x) is a function that, 
when integrated over the range (a, b), will yield the probability that a sample is realized 
such that the resultant x would fall in that range (much as the probability function for 
continuous sample spaces was defined above).  In this case the p.d.f. will obey three basic 
rules: 
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Associated with these densities are Cumulative Distribution Functions F(x) which in each 
case yield the probability that the random variable X is less than some value x.  
Algebraically these may be expressed as: 
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Note that in the case of discrete random variables F(x) is defined over the whole range of 
the random variable and in the case of continuous distributions d(Fx)/dx = f(x) i.e. the 
derivative of the c.d.f. of x gives us the p.d.f. of x. 
  
 

Expected Values and Variances 
 
The Expected Value of a function g(x) of a random variable is a measure of its location 
and is defined for discrete and continuous random variables respectively as follows: 
 

∑=
ixpossibleall

ii xfxgXgE )()())((  

∫
+∞

∞−

= dxxfxgXgE )()())((  

 
The expectations operator E( ) is simply another mathematical operator.  Just as when the 
operator d/dx in front of a function g(x) tells us to “take the derivative of the function 
g(x) with respect to x according to a well specified set of rules” so E(g(X)) tells us to 
perform one of the above calculations dependent upon whether X is continuous or 
discrete.  Like the derivative and integral operators, the expectations operator is a linear 
operator so that the expected value of a linear function of random variables is the same 
linear function of the expected values of those random variables.  This property will be of 
useful shortly. 
 
Aside from the general applicability of the above formulae there are many special types 
of g( ) function of interest to statisticians, each generating particular details of the nature 
of the random variable in question, things like moment generating functions and 
characteristic functions that are the material of a more advanced text and things like the 
Expected Value function and Variance function that are of interest to us here. 
 
 

Two g( ) functions of special interest 
 
1. g(X) = X 

 
Obviously this yields E(X), the expected value of the random variable itself (frequently 
referred to as the mean and represented by the character μ), which is a constant providing 



a measure of where the centre of the distribution is located.  The metric here is the same 
as that of the random variable so that, if f(x) is an income distribution measured in $US, 
then its location will be in terms of a $US value.  The usefulness of the linearity property 
of the expectations operator can be seen by letting g(X) = a + bX where a and b are fixed 
constants.  Taking expectations of this g(X) yields the expected value of a linear function 
of X which, following the respective rules of summation and integration, can be shown to 
be the same linear function of the expected value of X as follows: 
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What the above demonstrates is two basic rules for expectations operators regardless of 
whether random variables are discrete or continuous: 
 

i. E(a) = a “The expected value of a constant is a constant” 
 
ii. E(bX) = bE(X) “The expected value of a constant times a random 

variable is equal to the constant times the expected value of the random 
variable” 

 
 
2.  g(X) = (X-E(X))i  i = 2,… 

 
Functions of this form yield “i”th moments about the mean.”  The metric here is the i’th 
power of that of the original distribution so that if f(x) relates to incomes measured in 
$US then the i’th moment about the mean is measured in ($US)i.  Sometimes the i’th root 
of g(X) is employed since it yields a measure of the appropriate characteristic in terms of 
the original units of the distribution.  Furthermore to make distributions measured under 
different metrics comparable the function g(X) deflated by the appropriate power of E(X) 
(provided it is not 0) is considered, providing a metric free comparator.  The second 
moment (i=2) is of particular interest1 since as the variance (frequently represented as σ2 
or V(X), its square root is referred to as the standard deviation) it provides a measure of 
how spread out a distribution is.  Of particular interest here is the Coefficient of Variation 
(CV) given by: 
 
The Coefficient of Variation: 
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1 The third moment provides a measure of skewness or how asymmetric a distribution is and the fourth, a 
measure of kurtosis or how peaked a distribution is but these will not be considered here. 



 
 
Which may be interpreted as a metric free measure of dispersion. 
 
Returning to the variance, regardless of whether the variable is discrete or continuous, 
notice that: 

V(x)  = E((X-E(X))2) 
=  E(X2 – 2E(X)X + (E(X))2) 
= E(X2) – 2E(E(X)X) + (E(X))2 

= E(X2) – (E(X))2

 
So that the variance is equal to the expected value of X2 less the square of the expected 
value of X (these are not the same thing).  Furthermore, again regardless of whether the 
random variable is discrete or continuous notice that for Y = a + bX: 
 

V(Y)  = E((Y-E(Y))2) 
= E((a + bX – (+bE(X)))2) 
= E((bX – bE(X))2) 
= b2E((X-E(X))2) 
= b2V(X) 
 

So that the variance of a constant is zero and the variance of a constant times a random 
variable is the square of the constant times the random variable.  The variance of a linear 
function of several random variables is a little more complicated, depending as it does on 
the relationships between the random variables it will be dealt with when multivariate 
analysis is considered later on.  There are numerous discrete and continuous probability 
density functions to suit all kinds of purposes, one of the arts in practicing statistics is that 
of choosing the one most appropriate for a particular problem.  Here we shall consider 
two examples of each to get an idea of what they are like. 
 

Examples of Discrete Probability Density Functions 
 
1) The Binomial Distribution. 
 
The Binomial Distribution is founded upon a process in which the same experiment is 
independently repeated n times under identical conditions.  The Sample Space for the 
experiment contains two possible events A and Ac and the issue at hand is how many 
times in n repetitions A occurs.  Suppose that P(A)=p (and consequently P(Ac)=1-p) and 
when A happens in the i’th repetition of the experiment) so that Xi is a random variable 
such that P(Xi = 1) = p and P(Xi=0) = 1-p for i = 1, 2, …, n.  Letting xi be the outcome of 
the i’th experiment f(xi), the p.d.f. for the i’th experiment is given by: 
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So that when Xi returns a 1 the p.d.f. is p and when it returns a zero the p.d.f. is 1-p.  
using the notions of Expected Values and Variances it can be shown that E(Xi)=p and 
V(xi)=p(1-p) as follows: 
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Since the repetitions of the experiment are independent the joint probability of the n 
repetitions is: 
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If A occurs k times the sum of the xi’s will equal k and this formula may be written as 
pk(1-p)n-k and corresponds to the probability of getting a particular sequence of 
experiments where A occurred k times.  The number of ways that A could happen k times 
in n experiments is n!/(k!(n-k)!) so that the probability of k occurrences in n experiments 
is given by: 
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Which is the Binomial Distribution. 
 
 

The Poisson Distribution 
 
The Poisson Distribution is employed in situations where the object of interest is the 
number of times given event occurs in a given amount of space or period of time.  Thus 
for example, it could be used to study the number of crashes that take place at a particular 
spot over a period of a week or it could be used to investigate the number of faults in a 
fixed length of steel.  The presumption in this model is that successive weeks, or 
successive lengths of steel are independent of one another and that the same probability 
model is applicable in each successive observation.  This is much the same i.i.d. 
assumption we made in the case of the Binomial Distribution. 
 
Letting x be the number of occurrences of the event the p.d.f. is given by: 
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The unknown parameter is such that E(x) = λ and V(x) = λ. 
 
 



Examples of Continuous Probability Density Functions 
 

The Uniform or Rectangular Distribution 
 
This is perhaps the simplest distribution available.  It describes the behaviour of a 
continuous random variable X that exists in the interval [a, b] whose probability of being 
in an interval [c, d] laying within [a, b] is given by (d-c)/(b-a).  That is to say the 
probability of it laying in any interval in its range is equal to the proportionate size of the 
interval within the range.  Furthermore X will have the same probability of landing in any 
one of a collection of equal sized intervals in the range (hence the name “uniform”).  This 
distribution with a=0 and b=1 is frequently used as the basis for random number 
generators in software packages and computer games, largely because it is relatively easy 
to generate other more complex random variables from it.  
 
Formally: 
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The Normal Distribution 
 
The normal distribution is probably the most frequently employed distribution in 
statistics with good reason, there are sound theoretical reasons why it can be employed in 
a wide range of circumstances where averages are used.  Its p.d.f. is of the form: 
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The parameters μ and σ2 respectively correspond to the mean and variance of the random 
variable x.  The fact that X is normally distributed with a mean μ and a variance σ2 is 
often denoted by X ~ N(μ, σ2).  The normal distribution does not have a closed form 
representation for the cumulative density F(X) (i.e. we cannot write down an algebraic 
expression for it) but this will not present any difficulties since it is tabulated and most 
statistical software packages are capable of performing the appropriate calculations.  The 
distribution is symmetric about the mean, bell shaped (hence the terminology “are you 
going to bell the mark sir?”) with extremely thin tails to the extent that more than 99% of 
the distribution lays within μ±2σ. 
 



Normal random variables possess the very useful property that linear functions of them 
are also normal.  Hence if X is normal then Z = a + bX is also normal, and using our rules 
for expectations, E(Z) = a + bE(X) and V(Z) = bV(X).  Letting a = -μ/σ and b = 1/σ, Z ~ 
N(0, 1) which is referred to as a Standard Normal Random Variable (indeed the standard 
normal variable is frequently referred to with the letter z, hence the term “z score”.  This 
is most useful since N(0.1) is the distribution that is tabulated in textbooks and 
programmed in software packages.  Suppose we need to calculate P(X<x0) is some 
known value and X ~ N(μ, σ2) where the mean and variance are known values.  Then 
since: 
 

)()()( )
00

0
σ
μ

σ
μμμ −− <=−<−=< xXPxXPxXP  

 
And since Z = (X-μ)/σ: 
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So all that is needed is to calculate the value (x0-μ)/σ and employ the standard normal 
tables or software package to evaluate the probability. 
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