
Probability Numbers 
 
For many statisticians the concept of “the probability that an event occurs” is ultimately 
rooted in the interpretation of an event as an outcome of an experiment, others would 
interpret the concept as a subjective degree of belief that the event occurs.  This 
difference in interpretation has been the source of great debate between Frequentists (the 
former group) and Bayesians (the latter group) within the statistics profession.  This 
philosophical debate ultimately influences the way that empirical results are obtained and 
interpreted, but does not affect the use of probability ideas employed in describing the 
distribution of happiness in a society.  Hence we shall proceed under the Frequentist 
interpretation whilst acknowledging the existing of an alternative. 
 
At the heart of the frequentists view of probability is the notion of an experiment.  A 
sufficiently general definition of the term “Experiment” permits an almost universal 
application of the probability concept.  Essentially a procedure must possess two 
properties to be eligible as an experiment. 
 

1) It should be notionally repeatable an infinite number of times with a well 
defined common set of possible outcomes each time the procedure takes 
place. 

 
2) There should be uncertainty as to which outcome will occur before the 

procedure takes place. 
 
Probability Theory is best understood by using ideas from set theory in its description.  
The appendix provides an outline of the basic set theory ideas that are used. 
 
The set of mutually exclusive (having nothing in common) and exhaustive (a complete 
list of) possible Basic Outcomes (denoted oi) of an experiment is usually called The 
Sample Space (denoted S).  An Event is defined as any subset of this sample space, 
including the empty set and the sample space itself, generally an event is denoted by an 
upper case letter say A, Ac, the complement of A, then corresponds to A not happening.  
An event is said to have occurred when any one of the basic outcomes in its defining 
subset is realized.  Thus, on executing the procedure, the empty or null set is the event 
“no outcome occurs” which is certain not to happen, similarly the sample space set (the 
universal set in set theoretic terms) is the event “an outcome occurs” which is certain to 
happen.  Given outcome uncertainty there is obviously event uncertainty ranging in 
degree between the empty set and the sample space. 
 
Numbers attached to events reflecting the degree of certainty with which they occur, and 
which in turn obey certain coherency axioms, are called “Probabilities.”  The coherency 
axioms are simple yet remarkably powerful, they provide the basis for all probability 
theory regardless of its objective or subjective foundations.  Denoting the occurrence of 
the i’th basic outcomes as oi and the probability of it happening as P(oi) and denoting 



events by upper case letters (with S and ∅ respectively reserved for the sample and 
empty sets) the coherency axioms are as follows: 
 

1) Probability numbers are non-negative.  Using our notation this may be written 
as: 
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2) The probability of an event is the sum of the probabilities of the mutually 
exclusive basic outcomes that the event comprises.  Using out notation this may 
be written as: 
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3) The probability that something happens is 1.  using out notation this may be 

written as: 
 

P(S) =1 
 

From these axioms many implications follow, specifically they are that: 
 

i. The probability of an event occurring is one minus the probability of 
it not occurring (making the probability of nothing occurring zero). 
 
Set Theory tells us that for any event A, A∩Ac = ∅ and A∪Ac =S.  Axiom 
2 tells us that P(A∪Ac) = P(S) = P(A) + P(Ac), axiom 3 tells us that P(S) = 
1 and so it follows that P(A) = 1 – P(Ac).  If we let A = S it follows that 
P(∅) = 0. 
 

ii. If event A includes event B (which may be written as B ⊂ A) then P(A) 
≥ P(B). 
 
Note that A = B∪(A∩Bc) and B∩(A∩Bc) = ∅. Axiom 2 tells us that P(A) 
= P(B) + P(A∩Bc) and Axiom 1 tells us that P(A∩Bc) ≥ 0 so P(A) ≥ P(B). 

 
iii. For any event B, P(B) ≤ 1. 
 

This can be seen by simply letting A in ii) be the sample space S and 
nothing that Axiom 3 tells us that P(S) = 1. 
 

iv. The probability of any one of a collection of mutually exclusive events 
occurring is the sum of their individual probabilities. 

 
This is just a repeated application of Axiom 2. 
 
 



v. For any two events A and B, the probability of either one or both of 
them occurring is the sum of their probabilities minus the probability 
that they both occur. 

 
This is possibly the most complicated idea to justify.  First note that A = 
(A∩B)∪(A∩Bc) and (A∩B)∩(Ac∩B) = ∅ so that P(A) = P(A∩B) + 
P(A∩Bc) from Axiom 2, in a similar fashion P(B) = P(A∩B) + P(Ac∩B) 
can be established.  Secondly note that A∪B = (A∩B)∪(A∩Bc)∪(B∩Ac) 
where (A∩B), (A∩Bc) and (B∩Ac) are all mutually exclusive sets so that 
P(A∪B) = P(A∩B) + P(A∩Bc) + P(B∩Ac) also from Axiom 2.  
Comparing the equations for P(A), P(B) and P(A∪B) it can be seen that 
P(A∪B) = P(A) + P(B) – P(A∩B). 
 
 

Conditional and Marginal Probability and the notion of Independence 
 
Within the above set of implications the notion of jointly occurring events has already 
been entertained.  Here it is extended so that the concepts of conditional and marginal 
probability and independence can be understood.  We suppose the sample space is 
covered by a collection of mutually exclusive and exhaustive events Ai, i=1, …, n and 
another collection of mutually exclusive and exhaustive events Bj, j=1, …, m.  for 
example the sample space may be a collection of people and the events Ai refer to income 
categories and Bj to occupational categories or the sample space may be a regular deck of 
cards (excluding jokers) and the events Ai refer to the card values and the events Bj refer 
to the suits.  A notional experiment may e the random selection of an individual or a card, 
the element selected will have both characteristics prompting questions as to how will 
they jointly relate to the probability of the element being selected. 
 
The basic building block is the joint probability of selecting an element which jointly 
exhibits characteristics Ai and Bj (written P(Ai∩BBj)).  To obey the above axioms the 
following must be true: 
 

P(Ai∩BBj) ≥ 0 for all i, j. 
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In the context of our examples the value P(Ai∩BBj) is the answer to questions like “what is 
the probability of selecting someone in the poverty group who is a lawyer?” or “what is 
the probability of selecting the four of clubs?” 
 
If characteristics of only one type are of concern the probability of that characteristic, 
known as the marginal probability, may be calculated as follows: 
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Intuitively, in the case of the marginal probability of “A” events, the probability of event 
(Ai and “all possible B events”) is calculated and in the case of the two examples answers 
the questions “what is the chance of selecting someone in the poverty group regardless of 
their occupation?” or “what is the chance of drawing an ace regardless of its suit?”.  Note 
that marginal probabilities also obey all of the probability axioms. 
 
 
Slightly more complex questions of the form “given the person selected is a lawyer, what 
is the chance she is in the poverty group?” or “having been reliably informed that the card 
drawn is an ace, what is the chance it is a diamond?” require the concept of conditional 
probability.  What is really happening is that the sample space is being modified or 
constrained by the introduction of information upon which the event is now predicated or 
“conditioned”.  As long as the conditioning event has a non-zero probability (is real 
information in some sense) a cogent set of conditional probability numbers can be 
calculated by dividing the joint probability of the two events by the marginal probability 
of the conditioning event.  Writing the conditional probability of Ai given Bj as P(Ai∩BBj) 
the appropriate calculation is: 
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Independence between two events is readily defined and interpreted in the context of 
conditional probability.  Events Ai and Bj are independent if 
 

P(Ai∩BBj) = P(Ai)P(Bj) 
 
Note that this only refers to the specific characteristics Ai being independent of specific 
characteristic Bj.  For all characteristics A to be independent of characteristics B the 
independence condition must hold for all possible pairs i, j.  From the definition of 
conditional probability this implies: 
 

P(Ai|Bj) = P(Ai), P(Bj|Ai) = P(Bj) 
 
Which may readily be interpreted as the occurrence (or otherwise) of event B does not 
influence the probability of A occurring.  Most importantly the independence concept can 
be extended to a collection or sequence of many events so that their mutual independence 
implies that the probability of their joint occurrence will be the product of their individual 
probabilities, formally: 
 

P(A∩B∩C∩…) = (PA)P(B)P(C)… 
 



Bayes Rule 
 
This rule follows directly from the relationships between conditional, marginal and joint 
probabilities and may be stated as: 
 
The Bayes Rule: 
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Probability Functions 
 
The mechanism for attaching probability numbers to events is the probability function.  
Generically there are two types of probability functions, which one is employed depends 
upon the nature of the sample space it relates to.  Some sample spaces contain a finite or 
countably infinite number of basic outcomes and are covered by “Discrete Probability 
functions”, others contain an uncountably infinite number of basic outcomes and are 
covered by “Continuous Probability Functions”.  In the discrete case, where o is any 
basic outcome in the sample space S, any P(o) that satisfies P(o) ≥ 0 for all such o and 
P(S) = 1 is a Discrete Probability Distribution.  In the continuous case the situation is 
slightly more complex and is greatly facilitated by assuming that the sample space is an 
interval on the real line containing a typical point “x”.  in this case the continuous 
probability function is defined implicitly as any function f(x) that, for any event A 
defined on the sample space S, satisfies: 
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So that Discrete Probability Distributions attach probabilities to points, Continuous 
Probability Distributions attach probabilities to intervals. 



Appendix.  Basic Set Theory Concepts 
 
A set is simply a collection or list of objects or things called elements, the elements are 
referred to with lower case letters and the sets are referred to with upper case letters. 
 

Aa∈  
 
May be read as saying “the element a belongs to the set A” similarly: 
 

Aa∉  
 
May be read as “the element a does not belong to A”. 
 
The set of all elements of interest is referred to as the Universal Set, here it will be 
denoted by the letter S since in the realm of probability theory the Universal Set is the set 
of all the possible outcomes of an experiment or the sample Space.  The empty set or Null 
Set (which has no elements in it) is referred to with the character ∅.  The complementary 
set of A which is denoted Ac is the set of all elements in S that are not in A. 
 
Two basic operations are employed with sets, Set Union and Set Intersection. 
 

Set Union 
 
The Union of two sets A and B is written as A∪B and is the set of all elements in either 
A or B (Or both). 
 

Set Intersection 
 
The Intersection of two sets A and B is written as A∩B and is the set of all elements that 
are in both A and B. 
 
Note that both union and intersection operations can be employed successively on more 
than two sets so that A∪B∪C is the set of elements that are in any one of A, B or C and 
A∩B∩C is the set of elements that are common to A, B, C. 
 
 

Some basic Set Theory Ideas 
 

Mutual Exclusivity 
 



Two sets A and B are said to be mutually exclusive when they have no elements in 
common so that A∩B=, and similarly A∩Ac=. 
 

Subsets 
 
When all the elements in set A are in set B, A is said to be a subset of B, which is written 
as A ⊂ B.  It follows that all sets are subsets of the sample space so that A ⊂ S for any A. 
 
 

Some Rules for Operations 
 
Associative Rule 
 

A∪(B∪C) = (A∪B) ∪C 
A∩(B∩C) = (A∩B) ∩C 

 
Distributive Rule 
 

A∩(B∪C) = (A∩C) ∪ (A∩C) 
A∪ (B∩C) = (A∪B) ∩(A∪C) 

 
Complementation Rule 
 

(A∩B)c = A c∪B c

(A∪B)c = A c∩B c 
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