
Populations, Samples and Estimation. 
 
Consider 3 quite different scenarios. 
 
1) A manufacturer of electronic fuses needs to know the maximum amps at which 
a any one of a batch of fuses will burn out. Testing every one to destruction will 
leave none to sell, so a few of them are examined to get an idea of the properties of 
the batch as a whole. 
 
2) The government of a large country needs to know what proportion of the 
population will be eligible for benefits in a health program directed at preventing a 
particular disease. It is not possible to examine everyone in the country for 
susceptibility to the disease (some of whom will have died and others who will 
have born during the examination process) so a much smaller group of individuals 
is examined in order to gage the likely proportion in the population that are 
susceptible. 
 
3) A local authority, responsible for providing an emergency response team for car 
crash victims on a collection of highways, needs to know the likely monthly 
frequency and location of crashes in order to establish the size of, and resources 
for, the response team. The location and number of crashes per month in recent 
history is used as a guess of what the likely locations and frequencies would be. 
 
Each of these three cases has all the characteristics of the problem facing a 
statistician, the need to glean some information about an always obscure and often 
large collection of things - the Population of Interest - by examining a much 
smaller and very real sub group of that collection - The Sample. 
 
When every element in the population is identified and the relevant characteristic 
recorded, the resultant data set is referred to as A Census; it constitutes a complete 
record of The Population of Interest. It is not necessarily an infinite list (the 
complete batch of fuses could certainly all be examined, the population of a 
country could certainly all be counted at a point in time) though sometimes it is 
(the number of places that accidents could take place in a highway system is 
infinite and the theoretical frequency with which they occur on average over a 
given period of time is certainly obscure and unobservable). When for various 
reasons (economic, feasibility, or practical) a census cannot be taken, the 
Population of Interest is something about which we can only conjecture. Typically 
in statistics the characteristic of the population we are interested in is treated as a 
random variable and a probability density function (p.d.f.) is used to describe its 



distribution across the range of potential values. One of the arts of practising 
applied statistics is that of choosing the right distribution for the problem at hand 
and estimating the parameters upon which the distribution depends. 
 
The Sample is something tangible that we do observe and use to explore 
conjectures about the population of interest, i.e. we use the sample to tell us 
something about a population which we cannot examine directly via a census, 
specifically we use it to estimate the parameters (or relevant functions of them) of 
the p.d.f. that describes the population. 
 
The way that the sample is taken will clearly influence the estimates we get. The 
simplest, most effective form of sampling is simple random sampling wherein all 
of the elements of the sample are each independently and randomly drawn from the 
population. Agencies that collect data often collect “representative” samples for 
reasons of economy and unless great care is taken the results emerging from such 
samples can be misleading. Two types of “representative sampling” are Cluster 
sampling - which divides the population into clusters or groups and randomly 
selects a small set of clusters within which a complete census is taken - and 
Stratified Sampling - splitting the population into mutually exclusive groups or 
Strata (by age, location, gender or profession for example) and taking a random 
sample from each strata. For example if one draws an equal number of people from 
each of the provinces in Canada (stratification by location) in order to calculate the 
average height of people in Canada, and if height is related to location so that the 
further west one goes, the taller people tend to be, then a straight average across all 
of the samples will misrepresent the average height in Canada. Here we 
concentrate on the properties of estimators of the population mean based upon a 
Simple Random Sample.  
 
Properties of the Sample Mean.  
 
Simple random sampling yields well defined and intuitively attractive properties 
for our estimators. In this instance all the elements in the sample are mutually 
independent of one another so that the joint distribution of the sample is the 
product of the individual densities. Furthermore every sample selected should have 
the same probability of being selected. Consider the following example: 4 students 
A, B, C and D write  a test which the TA has marked. The marks were A 2, B 2, C 
3 and D 4 but the instructor does not know this, he does not want to read all of the 
tests so he takes a random sample of one and takes the mark (which we will 
interpret as the average of the sample) in order to estimate the class average. 
 



Table 1. 
Sample Estimate Deviation 

from mean 
Squared 
Deviation 
from Expected 
Value 

Probability of 
Drawing this 
Sample 

A 2 0 0 1/4 

B 2 0 0 1/4 

C 3 1 1 1/4 

D 1 -1 1 1/4 

Expected 
Value 

2  1/2  

 
Notice the expected value of the estimate, which was defined in chapter 3 as: 
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is equal to the true mean of the class , though individual samples will render an 
estimate different from the true mean (samples C and D for example). This 
demonstrates that the estimator has the property of Unbiasedness, about which 
more later. Furthermore the Variance of the sample mean (the expected value of 
the squared deviation from the expected value), defined in chapter 3 as: 
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is equal to the true variance of the class. This latter phenomenon arises because the 
estimator is based on a sample of one. 
 
Suppose now the instructor takes a random sample of two and takes the average 
mark in order to estimate the class average, Table 2 records the set of possible 
samples together with their corresponding means etc. 
 
Table 2. 
Sample Average Deviation 

from Mean 
Squared 
Deviation 
from Mean 

Probability of 
drawing this 
sample 



A,B 2 0 0 1/6 

A,C 2.5 0.5 .25 1/6 

A,D 1.5 -0.5 .25 1/6 

B,C 2.5 0.5 .25 1/6 

B,D 1.5 -0.5 .25 1/6 

C,D 2 0 0 1/6 

Expected 
Value 

2  1/6  

 
Notice that this estimator is also unbiased (its expected value is equal to the 
population mean) but now its variance is smaller (1/6 as opposed to 1/2). This is a 
result of the estimator being based upon more information (2 students marks as 
opposed to one) and reflects the increased precision of the estimator that more 
information engenders. Another way of interpreting this is that the probability of 
getting an estimate further than a particular distance from the true value has been 
reduced by the utilization of more information.. 
    
To check this effect of increasing sample size suppose now the instructor takes a 
sample of 3 and takes the average mark in order to estimate the class average, 
Table 3 describes the situation. 
 
Table 3. 
Sample Average Deviation 

from mean 
Squared 
Deviation 
from Mean 

Probability of 
Drawing this 
Sample 

ABC 2 1/3 1/3 1/9 1/4 

ABD 1 2/3 -1/3 1/9 1/4 

ACD 2 0 0 1/4 

BCD 2 0 0 1/4 

Expected 
Value 

2  1/18  

 
Indeed the estimator is still unbiased and its variance has been reduced yet again. 



 
What do we take from this example? First the sample mean is a random variable 
because it is based upon a random sample. Secondly it is an unbiased estimator of 
the population mean regardless of the sample size. Thirdly its variance diminishes 
with the sample size reflecting the increased amount of information being 
employed. In fact in general given a random sample of Xi, i = 1,.., n from a 
population described by the distribution f(x) such that E(X) = μ and V(X) = σ2 it is 
readily seen that: 
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which is to say that the expected value of the sample mean is the population mean. 
The 
Variance of the sample mean can be deduced in a similar fashion as follows: 
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this follows from the variance of a constant times a random variable being equal to 
the constant 
squared times the variance of the random variable and that since the Xi’s are all 
independent of 
one another the variance of the sum will be equal to the sum of the variances so 
that: 
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i.e. the variance of the sample mean is equal to the population mean divided by the 
sample 
size so that larger samples imply smaller variances. Given the nature of a simple 
random sample, 
the only requirement for these two properties is that the population has a mean and 
a variance. 
It turns out that there are an infinite number of unbiased estimators of the sample 
mean based 
upon a sample of size n, consider for example X* given by the following formula: 
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It can be readily shown that E(X*) = μ  (demonstrate this as an exercise) but is it 
“better” than the sample mean? To help us compare and choose between 
alternative estimators we look for them to have certain qualities or “properties”, the 
properties briefly introduced here are Unbiasedness , Efficiency, Consistency and 
Sufficiency. We will prefer estimators that possess these qualities over estimators 
that do not. In this book attention is focused on estimating population means, 
proportions and variances but there are many other population parameters that 
are of interest. The following properties can be demanded of an estimator of any 
unknown parameter so for generality in the following discussion θ  denotes the 
population parameter to be estimated and θ (X,n) denotes the estimator (connoting 
the fact that the estimator is a function of a sample of the X’s of size n). 
 
Unbiasedness. 
For an estimator to be unbiased it is required that the expected value of the 
estimator be equal to the parameter being estimated so that: 
                                          ( ( , ))E X nθ θ=  
What this means is the average of the estimator over all the possible samples of 
size n is equal to the value of the parameter being estimated. For estimators that are 
linear in the random variable (such as the sample mean) unbiasedness is easy to 
check for given the linearity property of the expectations operator (the expected 
value of a linear function of a random variable is the same linear function of its 
expected value). So for example consider the average of a random sample of size n 
drawn from a normally distributed population such that 2( , )X N μ σ∼ where an 
element of  the random sample is denoted Xi,  i = 1,..,n so that E(Xi) = μ  and 
V(Xi) = 2σ .     
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Efficiency 
 
The efficient estimator is the unbiased estimator with the smallest variance for a 
given sample size. Often we are confronted with two unbiased estimators 1( , )X nθ  



and 2 ( , )X nθ based upon a sample of size n, if 1 2( ( , )) ( ( , ))V X n V X nθ θ<  then 1( , )X nθ is 
said to be relatively more efficient than 2 ( , )X nθ . Again, given the linearity of the 
expectations operator, for linear estimators based upon random samples, evaluating 
their variance are pretty straightforward for example consider the variance of the 
sample mean. 
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With a very large number of estimators a lot of pair-wise comparisons can be 
tedious. Fortunately we have a criterion known as the Cramer-Rao lower bound 
which tells us in a particular circumstance what the lowest possible variance for an 
unbiased estimator is so that all we need to do is to compare the variance of our 
estimator with the bound. If it is equal to the bound we know we cannot do any 
better. The formula for this lower bound is: 
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which looks much more complicated than it really is since it is just the inverse of n 
times the expected value of the square of the derivative of the log of the p.d.f. with 
respect to the parameter being estimated. It turns out that this is often easy to 
evaluate. In our example of estimating μ  by the sample mean from a normal 
distribution we have lnf( ) 2 20.5ln(2 ) ( ) / 2x 2πσ μ= − − − σ ,which has a derivative with 

respect to μ  of (x- μ )/ 2σ which when squared is 4
( )X μ

σ
− and since μ   = E(X) and 

V(X) =  it follows that 2( (E X E X− ))
2 2

4 4
( ) 1( )XE μ σ

2σ σ
− = = σ .Multiplying this 

by n and inverting yields a lower bound for the variance of an unbiased estimator 
of μ  of 

2

n
σ . Note that this is the same as the variance of our sample mean which 

we derived above so we’ve verified that our estimator has as small a variance as is 
possible for an unbiased estimator. 
 
 
Consistency 
 
This property or quality depends upon a mathematical notion known as a 
probability limit one version of which is: 
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where ∈ is an arbitrarily small number. Intuitively all this says is that, as the 
sample size grows without bound, the chance that the estimator will be different 
from what is being estimated tends to zero. So the idea of consistency has to do 
with what happens to the estimator as the sample size grows without bound. 
Another way of thinking about it is that if the estimator ceases to be a random 
variable, becomes as it were a constant which is equal to the true parameter value 
being estimated, then the estimator is said to be consistent. In mathematical terms 
the probability limit of the estimator is the true parameter value being estimated or 

lim (P X , )
n

nθ θ
→∞

= . There are many types of probability limits, the version presented is 

the simplest. The easiest way of checking for consistency is to check that the 
estimator is unbiased and that its variance goes to zero as n becomes infinite. So 
our sample mean, with an Expected Value of μ  which is unaffected by n and 
hence unbiased as n tends to   and a Variance of ∞ 2σ  /n which will tend to 0 as n 
tends to  will indeed be consistent. ∞

 
Sufficiency 
 
A sufficient estimator is one that uses all of the information in the sample 
effectively. This is most easily checked for via what is called the factorization 
theorem which simply states that the estimator θ (X,n) is sufficient if the joint p.d.f. 
of the sample can be factorized into the product of two functions one of which 
contains only the estimator and what is being estimated and the other which only 
contains the data. That is to say θ (X,n) is sufficient for θ  if we can write: 
 
              1 2 3 n 1 2(f(X , )f(X , )f(X , )...f(X , )) = g( (X,n), )h(X ,X ,..,X )nθ θ θ θ θ θ  
 
Example 
 
To exemplify these ideas we consider four estimators of the mean of a normal 
population 1, 2, 3 4andμ μ μ μ which are respectively of the form: 
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1μ  is the sample mean, 2μ  is the sample mean with the first observation counted 
twice, 3μ  is the sample mean where the researcher has inadvertently included the 
number 1 in the summation and 4μ  is where the (lazy) researcher has decided to 
average only the first n1 of his observations. 
 
1. Unbiasedness. Since these are all linear estimators examining them for 
unbiasedness is a straightforward matter of taking expectations as we did earlier. It 
is readily observed that 1μ , 2μ  and 4μ are all unbiased since their expectation is μ , 
the expected value of is 3 1 nμ μ= +  so this is not an unbiased estimator unless the 
sample size becomes infinite. 
 
2. Efficiency. The variances of the four estimators are respectively 

 so that only 2 2 2 2 2
1/ , 1/ ( 1) /( ( 1) , / /n n n n n n and nσ σ σ σ⎡ ⎤ + − +   ⎣ ⎦ 1μ attains the Cramer Rao 

lower bound ( 3μ  is not unbiased so its variance should not be compared to the 
bound) and is thus an efficient estimator. 
 
3. Consistency. Since as n tends to infinity 1, 2 3andμ μ  μ are all unbiased with 
variances that go to 0 they are all consistent. With respect to 4μ , although it is 
unbiased is not consistent because as n tends to infinity its variance remains 
constant at 2σ /n1. 
 
4. Sufficiency. Given independent X’s and normality, the joint density of the 
sample may be written as: 
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Note that the joint density can only be factorized with respect to 1μ   in this fashion 
none of the other estimators are sufficient statistics. 
 
 



 
The Central Limit Theorem 
 
For a random sample , 1,....,iX i = n  from any population with a p.d.f. f(X) such that 
E(X) = μ  and V(X) = 2σ the sample mean X  is distributed as N ( μ , 2σ /n) for n 
sufficiently large enough. This important result removes concern about the 
underlying distribution of X and shifts attention to the normal distribution and its 
close relatives when the mean of the population is of interest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
More on Estimation. 
 
In the previous chapter we looked at the properties of estimators and the criteria we 
could use to choose between types of estimators. Here we examine more closely 
some very popular basic estimation techniques, two of which focus on the 
estimation of parameters of a pre-specified probability density function (Maximum 
Likelihood and Method of Moments techniques) and the third which focuses on the 
estimation of the shape of an un-specified probability density function (kernel 
estimation). In all cases we are confronted with a random sample , 1,2,..., .iX i n=  and 
in the first two cases we know the form of the p.d.f. f ( , )X θ but not the value of the 
parameter θ  (often there will be more than one parameter, the techniques are 
readily extended to deal with this situation) in the third case we do not know the 
form of f all we are trying to calculate is the value of f ( ) for a given x. The third 
case relates solely to continuous random variables, the first two cases relate to both 
discrete and continuous random variables, in our discussion we refer only to the 
continuous case though we will give examples of discrete random variable 
problems. 
 
Maximum Likelihood Estimation 
 
The intuition behind this technique is to choose a value for the unknown θ  that 
will make the chance of us having obtained the sample we did obtain as big as 
possible. The rationale for this is that any sample we get is going to be a more 
likely to be a high probability sample than a low probability sample. Imagine we 
wish to estimate the average height of males and we randomly sample 4 males 
from off the street, we would be surprised if all 4 were above 7 feet and similarly 
we would be surprised if they were all below 4 feet. This is because they are 
unlikely samples. 
We would be a lot less surprised if their heights were between 5 and 6 feet because 
that would constitute a more likely sample. Thus it makes sense to choose a value 
for θ  which maximizes the probability of having got the sample that we got. 
Given f(x,θ ) and independently drawn Xi;s, the joint density of the sample which 
is referred to as L, the likelihood, is given by: 
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and the estimation technique simply amounts to deriving the formula for θ  in 
terms of the Xi;s which maximizes this function with respect toθ . For technical 



reasons (i.e. the algebra is usually easier!) we usually maximize the log of the 
likelihood. When there is more than one parameter the first order conditions are 
simply solved simultaneously (see the examples below). 
 
Method of Moments Estimation 
 
The motivation here is quite different from, and somewhat more straightforward 
than, that for the maximum likelihood method, it relies on common sense. We have 
seen in an earlier chapter that given f(x,θ ) we can obtain a formula for the 
theoretical mean or expected value of x and we can similarly obtain a formula for 
the theoretical variance and any other moments of x, for example if x is a 
continuous random variable we have:  
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The sample mean and sample variance are estimates of E(X) and V(X) respectively 
so all that is needed is to set one of the formulae to its corresponding sample 
equivalent and then solve for the value ofθ , when there is more than one parameter 
we choose as many moments as we have parameters to solve for. 
 
 
Some Examples. 
 
1. The Poisson Distribution provides us with an example of a discrete distribution 
with one parameter. In this case Xi is an integer and f(x,0≥ λ ) is of the form: 
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and E(x) = λ . In this case the Method of Moments technique is very straight 
forward, since we simply set our estimator of λ   to the sample mean X . For 
finding the formula for the Maximum Likelihood estimator the logarithm of the 
likelihood is given by: 
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and taking the derivative w.r.t. λ  and setting it to X   yields: 
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Solving this for λ  yields the sample mean of X, (note that in this case the 
Maximum Likelihood Estimator and the Method of Moments Estimator are the 
same).  
 
 
 
2. The Power Function Distribution provides us with an example of a one 
parameter continuous distribution. In this case Xi is a number between 0 and 1 and 
f(x,θ ) is of the form: 
                                     ( ) 1,f x xθθ θ −=   
and E(x) = θ / (θ +1). For the Method of Moments estimator we simply set the 
formula for E(x) equal to X  and solve for θ  so that our estimator for θ  will be 

( )1
X

X−
. For the Maximum Likelihood estimator the logarithm of the likelihood is 

given by: 
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Taking the derivative w.r.t. θ  and setting to zero yields: 
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Re-arranging in terms of θ  yields a Maximum Likelihood estimator n/Σ -ln(Xi) 
which of course is very different from the Method of Moments estimator above. 
 
 
3. The Normal Distribution provides us with a continuous random variable 
example of a two parameter problem where the unknown parameters in the 
distribution are μ   and 2σ  , the mean and variance respectively. The p.d.f. in this 
case is given by: 
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Where E(x) = μ  and V(x) = 2σ . Again the Method of Moments estimators are 
trivial, we simply set the estimators of μ and 2σ equal to the sample mean and 
sample variance respectively. For the Maximum Likelihood estimators the 
logarithm of the likelihood is given by: 
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Now we have to take the derivatives with respect to both μ and 2σ , set them both to 
zero and solve the equations simultaneously. Taking the derivatives and setting 
them to zero after some cancellations yields: 
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Solving these simultaneously yields the sample mean as the Maximum Likelihood 

estimator for  μ  (the same as the Method of Moments estimator) and ( )
2
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as the Maximum Likelihood estimator of 2σ  (which is different from the method 
of moments estimator). 
 
 
Kernel Estimation. 
The issue to be addressed here is the estimation of some unknown density function f(x) which 
underlies a sample of observations on x. Given such a sample xi , i = 1,..,n, the generation of a 
naive estimate of f(x) is straightforward. If the random variable X has the density f(x) then: 
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for given h we can estimate P(x-h < X < x+h) by the proportion of observations falling into the 
interval x-h, x+h. Letting I( ) be an indicator function where I(z) = 1 if z is true and 0 otherwise, 
our estimator of f(x) (call it fe(x)) may be written as: 
 

                                     
1

1 1( ) 1
2

n
e i

i

x xf x I
n h h=

⎛ − ⎞
= <⎜ ⎟

⎝ ⎠
∑  

 
There is a connection with histograms, suppose no xi lands exactly on the boundary of a bin, then 
this estimator corresponds to splitting the range of the random variable into bins of width 2h 



allowing x to be the “center” of each bin and treating fe(x) as the ordinate of the histogram. The 
problem with this type of estimator is that it is not “smooth” but consists of a sequence of jumps 
at x ± h with a zero derivative everywhere else. Kernel estimators get around this problem by 
replacing .5I( ) in the above formula by a kernel function K( ) with certain desirable properties 
that to some degree resolve the “smoothness” problem. So that our estimator looks like:  
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Where h is usually referred to as the band width, window width or smoothing parameter. 
 
 
 The kernel function. 
 
Generally a kernel function would be selected so that it satisfies: 

                                                                                                                                               

making the vast array of continuous density functions suitable candidates. Provided K() is 
everywhere non negative (making it a density function) fe( ) will itself be a density function and 
will inherit all of the continuity and differentiability properties of K. 

( )K y dy
∞

−∞
∫

 
 Three Examples: 
In each of the following h is the bandwidth and ti = (x-Xi)/h. The Epanechnikov Kernel KE(ti) is 
of the form: 
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The Gaussian Kernel KG(ti) is of the form: 
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The Biweight Kernel KB(ti) is of the form: 
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Note also the original naive estimator is like a rectangular kernel with K(ti) = .5 1, 0it <   
otherwise. 
 
Choosing the ‘h’ and the Kernel. 
 
Think about the mean integrated squared error of the estimator defined by: 



( ) ( ) ( )( )2e
eMISE f E f x f x dx= −∫  

Since the integrand is non-negative the order of integration and expectation can be reversed, note 
also that 

( ) ( )22 2 2( ) ( ( ) ) ( ) ( ( )) var(e e e e e e e
2 )eE f f E f E f E f f E f f E f E f bias f− = − + − = − + − = +  

yielding:  
                          2( ) ( ( ( )) ( )) var( ( ))e

e eMISE f E f x f x dx f x dx= − +∫ ∫  
which is the integrated squared bias plus the integrated variance. This would conceptually be a 
useful thing to minimize in choosing h and the Kernel. Rewriting K* = K/h it can be noted that: 

                       
1

1( ) ( *( )) *( ) ( )
n

e
i

i
E f E K t K t f x dx

n =

= =∑ ∫                                                                                         

which, for given f, does not depend upon n but only on K and h. This indicates that taking larger 
samples alone will not reduce the bias; attention has to be focused on the choice of h and K! 
Confining attention to Kernels symmetric about zero with continuous derivatives at all orders 
with a variance vk, it can be shown that (see Silverman pages 39 to 40) that the optimal h is equal 
to: 
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Unfortunately “optimal h” here depends upon knowledge of the unknown f( ) we are attempting 
to estimate, however it does tell us that the optimal window gets smaller as the sample size 
grows (last term) and as the degree of fluctuation of the unknown function increases (penultimate 
term). Substituting the value of the optimal h back into the formula for the mean integrated 
squared error and minimizing with respect to K results in the Epanechnikov Kernel. The relative 
efficiencies of other kernels can be shown to be .9512 for the Gaussian kernel, .9939 for the 
Biweight kernel and .9295 for the rectangular suggesting that there is little to choose between 
kernels on efficiency grounds. 
 
Choosing h. 
Referring to the normal family of distributions with a variance 2σ  , yields a value of “optimal h” 
of 1.06 2σ 2n− . One could then estimate σ from the data and, on the presumption that the 
distribution being estimated was like the normal, use this as the value for h. When the underlying 
distribution is not normal this tends to result in over-smoothing (especially when bi-modality is 
present). A safe alternative, based upon a sample standard deviation of σ and a sample 
interquartile range ofξ   , the bandwidth ‘h’ is specified as: 
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Least Squares Cross Validation. 
 
Noting that the integrated squared error may be written as: 
and that the last term does not depend upon fe and hence h interest focuses on minimizing an 



approximation to the first two terms with respect to h. After some tedious argument it may be 
shown that a good approximation to these two terms is: 
where Kc is defined as: 
and K2(t) is the convolution of the Kernel with itself. Numerical methods for minimizing this 
w.r.t. h can easily consume inordinate amounts of time however fourier transform methods can 
be used to substantially reduce computations (see Silverman P61-66). Non the less the 
computational burden remains considerable. 
Likelihood Cross Validation 
Let f-i( ) be the Kernel estimate calculated by missing out observation xi then lnf-1(xi) is the 
loglikelihood 
of f as the density underlying the independent additional observation xi . We can think 
of maximizing this with respect to h, indeed why not maximize: 
This is related to the Kullback-Leibler Information distance I(f,fe) where: 
Thinking of E(CV(h)) as the expectation of f-j 

e for some arbitrary j we have: 
thus we are minimizing the Kullback - Leibler information distance plus a constant. 
Alternatively Silverman suggests eyeballing the problem. Plot out a selection of curves based 
upon different h’s and choose the one that best suits ones priors. 
A variable bandwidth h: The Adaptive Kernel. 
One of the problems with the above estimators is that the degree of smoothing is constant 
over all x, the same value in regions densely populated with x as it is in regions sparsely 
populated with x. This can lead to over-smoothing in the dense areas (taking out “bumps” that 
should be there) and / or under-smoothing in sparse areas (leaving in bumps that should not be 
there). To solve this problem a variable bandwidth estimator has been developed. Essentially in 
this case our estimator fae is of the form: 
Where hi is usually referred to as the local band width, window width or smoothing parameter. 
Various methods are available for estimation in this case, one of the simplest, most practical and 
most effective is the following. Compute fe in one of the preceding methods which yields a fixed 
bandwidth h. Calculate fgm the geometric mean of fe for the sample given by: 
set hi as: 
where a is a sensitivity parameter chosen by the investigator. Generally 0 # a # 1 with a=0 
returning us to the fixed bandwidth estimator. Most applications seem to choose a = 0.5. 
Consistency 
Under apparently very mild conditions on the kernel namely, 
together with *tK(t) * 6 0 as * t* 64 and a window width hn satisfying hn 6 0 as nhn 6 4 
convergence in probability of fe(x) to f(x) (convergence at a point) can be established. Essentially 
the requirement on h is that it does not converge to 0 as rapidly as n-1 ensuring the expected 
number of points in x ± hn tends to infinity with n. Further, and more importantly, under similar 
conditions supx * fe(x) - f(x) * can also be shown to converge to 0. A note of caution, the rate of 
convergence is often very slow so that in this instance consistency is by no means a warranty for 
good estimates! 
                    


