
Ordinary Least Squares Regression. 

 

Simple Regression. Algebra and Assumptions. 

 

In this part of the course we are going to study a technique for analysing the linear 

relationship between two variables Y and X. We have n pairs of observations (Yi Xi), i = 

1, 2, ..,n on the relationship which, because it is not exact, we shall write as: 

 

                                1,....,i i iy x i nα β  = + + ∈     =     

In this relationship α, β and εi   i = 1,.., n are fundamentally unobservable and we would 

like to estimate α and β. 

 

Approach: 

 

The idea is to select estimates of α and β lets call them α* and β* which yield a straight 

line (called the regression line) Y = α* + β*X which minimises a measure of the 

aggregate distance of the points  (Yi Xi), i = 1, 2, ..,n to that line in X Y space, where Y is 

measured on the vertical axis. The measure we use is the sum of squared vertical 

distances which we shall call the Error Sum of Squares (ERSS) so that α* and β* are 

solutions to the problem: 
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The multivariate calculus is employed to solve this problem by setting the partial 

derivatives of ERSS with respect to α* and β* to zero (called the first order conditions) 

and solving thus: 
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The solutions to which are: 
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Note the formula for β* has many alternative equivalent versions which may be seen by 

observing that for the numerator: 
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and for the denominator: 
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so that various combinations of numerator and denominator formulae yield 12 alternative 

representations of β*. 

 

Assumptions in the Ordinary Least Squares model. 

 

Note that while α, β and εi , i = 1,.., n are fundamentally unobservable we only concern 

ourselves with estimating α and β which define the relationship between Y and X. The εi  

i = 1,.., n are considered “errors” which accommodate all the other influences on Y not 

accounted for in α +βX as such we assume them to be random and to obey the following 

four assumptions: 

 

1) E(εi) = 0 for all i. 

 

This assumption really says that the average or net effect of all the other influences on Y 

not accounted for in α +βX  is constant and zero for each observation (i=1,..,n). 

 

2) V(εi) = σ2  > 0 for all i. 

 

This assumption really says that the variability of the net effect of all the other influences 

on Y not accounted for in α +βX  is constant and non zero for each observation (i=1,..,n). 



This is sometimes referred to as the homoskedasticity assumption and is not as innocuous 

as it seems. For example if Y were the consumption behaviour of an individual and X 

was their disposable income it says that the scale of variability of the unobserved effects 

would be the same for both rich and poor individuals.    
 

3) E(εi εj) = 0 for all i ≠ j. 

4) E(εi Xj) = 0. For i and j 

 

These last two assumptions derive from the general assumption that the net effects of all 

the other influences on Y not accounted for in α +βX are independent of the X’s and of 

each other. Again these are not innocuous assumptions, for example if the equation 

relates to the behaviour of individuals and individuals in the sample are related to one 

another in some fashion they are unlikely to be true. Similarly if the equation relates to 

behaviour through time today’s random effects are unlikely to be independent of 

yesterdays effects. 

 

Given these assumptions certain properties of the estimators follow. 

 

Unbiasedness. 

 

Under the above assumptions the ordinary least squares estimators α* and β* are 

unbiased so that E(α*) = α and E(β*) = β which may be demonstrated as follows. From 

the various formulae for β* we may write: 
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which, after noting that the sum of deviations from mean is equal to 0, may be written as: 
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which can readily be seen to have an expectation β. For α* note that: 
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since E(β - β*) = 0 and given assumption 1 E(α*) = α. 

 

The variances of the estimators. 

 

The variance of the estimators α* and β* facilitate inference and confidence interval 

estimation. The can be derived, given the above assumptions as follows. The variance of 

any random variable W is given by E[(W-E(W))2] so that for β* from the above we may 

write: 
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Note from our assumptions that: 
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which means that the variance may be written as: 
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By similar arguments the variance of α* is given by: 
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The Residuals. 

 



The things that are not “explained” by the model, the εi’s are in fact implicitly estimated 

by the model by Yi - α* - β*Xi. These estimates of the “errors” are frequently referred to 

as the “Residuals”. They too have properties which reflect the assumptions made 

regarding the true errors. 

 

1. The residuals sum to 0. 
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This mimics the idea that the errors have an expectation 0. 

 

2. The residuals are orthogonal to the X’s. 
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Which mimics the idea that the errors are independent of the Xi ‘s. 

 

Inference and Confidence Intervals. 

  

Noting that β* may be written as: 
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it can readily be seen that the estimator is a linear function of the errors εi, i = 1,..,n so 

that if they were normally distributed then so would β* be, in fact based upon the 

foregoing it is distributed as: 
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 in a similar fashion α* will be distributed as: 
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so that inference and confidence interval computations can proceed accordingly. 

 

An Estimator for σ2. 

 

As usual it is extremely rare for the value of the variance to be known so that generally it 

has to be estimated. The estimator σ2* is given by problem: 
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 which is most conveniently calculated by noting that: 
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employing this estimate means that: 
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and similarly: 
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so inference and confidence interval calculations can be conducted accordingly. 



 

R2 and all that. 

 

A very common instrument for measuring the degree of explanatory power in an equation 

is the R2 statistic which measures the proportion of the variability in the Yi’s that is 

attributable to the Xi’s. Given the amount of variability in the Yi’s attributable to the 

errors is given by the error sum of squares (ERSS), the proportion of the variability of the 

Yi’s attributable to the Xi’s is given by: 
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where the last equality is obtained by substituting in the formula for ERSS. Noting that 1-

R2 is: 

                               
( )

2

2

1

1 n

i
i

ERSSR
Y Y

=

− =
−∑

 

it follows that: 
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which is the square of the classic “t” statistic for β which will have an F(1,n-2) 

distribution. 

 

Multiple Regression. 

 

Here we consider the extension of the simple regression technique to analysing the linear 

relationship between K+1 variables Y and X1, X2, ..,XK. We have n K+1-tuples of 

observations (Yi Xi1 ,  Xi2, ..,XiK ) i = 1, 2, ..,n on the relationship which, because it is not 

exact, we shall write as: 
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In this relationship α, βk, k = 1,..,K and εi  i = 1,.., n are fundamentally unobservable and 

we would like to estimate the α and βk. Essentially this deals with the case where Y is 

described by more than one variable X. We require one addition to our 4 assumptions, 

namely n > K+1. 

 

In the same way that estimators for α, β were developed in the simple regression case (by 

minimising ERSS) estimators for α, βk, k = 1,..,K  (denoted α*, β*
k, k = 1,..,K ) can be 

developed by minimizing with respect to α*, β*
k, k = 1,..,K the multivariate version of the 

error sum of squares given by: 
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The formulae for these estimates and similarly formulae for Var(α*) and Var(β*
k), k = 

1,..,K are complicated and will not be given here however these estimates are readily 

calculated using available software packages and just as in the simple regression case 

inference and confidence intervals may be pursued by noting that: 
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so that inference and confidence interval calculations can be conducted accordingly. 

 

R2 in the Multivariate Case. 

 

In the multivariate case R2 can be calculated in exactly the same fashion as: 
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however in this case if we wish to use it in the context of a joint test of the significance of 

all of the Xik’s we have to use: 
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which provides us with a one sided upper tailed test statistic for the significance of the K 

explanatory variables Xik. 


