
More on Hypothesis Testing:An example of some empirical research: An analysis of 

city size distributions in China introducing The Difference in Means and Associated 

Tests 

 

       Sometimes rather than be concerned about the particular value of the mean or 

variance of a population, or the nature of the underlying population distribution and we 

may wish to examine whether two population distributions differ, for example we may be 

interested in comparing the means or variances from two distinct populations. It turns out 

that with some minor modifications we perform very similar tests to the ones we have 

already discussed. To exemplify the tests discussed in the previous chapter and to 

introduce these new tests we will use some recent research on the nature and progress of 

city sizes in China over the period 1949-1999 (Anderson and Ge (2003)). 

 

Some Background: A Theory of City Size Distributions. 

 

       There is a theory in urban economics (Gabaix (1999)), for which evidence has been 

found in many countries, which says that when measured by the number of inhabitants 

city sizes within a country are governed by Zipf’s law Zipf (1949) (the logarithm of the 

rank of the city size ≈ - logarithm of the size relative to the minimum). This means that 

the distribution of city sizes at any point in time is a Pareto Distribution with a parameter 

θ = 1. Letting x be the city size and xmin be the minimum possible city size, the pdf and 

cdf of this distribution are given by f(x) = θ (xmin/xθ+1) and F(x) = 1- (xmin/x) θ 

respectively. 

 

       The law derives from two ideas, the first is that individual cities start at some 

minimum size (call it Z0) which is subject to a sequence of mutually independent 

multiplicative shocks (call the one in the i’th period (1+Xi) where Xi is small relative to 1 

and to Z0). In essence the shock is related to the number of people that die in, the number 

of people that are born in, the number of people that immigrate to and the number of 

people that emigrate from the city in period i, all of which are random events. The 

logarithm of city size in period I may be written as: 
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 where ei = ln(1+Xi). For I sufficiently large (that is after a sufficiently long period of 

time), the logarithm of city sizes can be shown to be distributed f(lnx) = N(lnZ0+(g-

.5σ2)I, Iσ2)1 where g is the long run growth component in ei and σ2  is its variance. This is 

known as Gibrat’s law (Gibrat(1930)(1931)), note that if g > .5σ2 this theory predicts that 

the mean and variance of the city size distribution will grow through time. 

 

      This is clearly not the same as Zipfs law and without the second idea this would be 

the city size distribution formula. The second idea is that city size is also subject to a 

lower reflective boundary below which it is not allowed to go so that if an Xi took Zi 

below Z0 the size would stay at Z0 until a subsequent shock took it back up above Z0. 

Gabaix was able to show that in this case the distribution of city sizes would become a 

Pareto Distribution with a paremter θ = 1 as above. Thus whether or not the mean and 

variance of city sizes grow through time and whether or not city size distributions are 

log-normal or pareto speaks to which parts of the theory is most powerful. Anderson and 

Ge (2003) used these ideas using Data from the Peoples Republic of China and the USA 

(the USA is known to be a country where Zipfs law holds) tables of results drawn from 

their work are provided in the Appendix. In both countries the minimum city size is set at 

100000. Tables 1 and 1a summarize the data. 

 

Implementing Pearson Goodness of Fit Tests. 

 

A natural thing to do is to employ Pearson Goodness of fit tests to check if the data on 

city sizes are Pareto or Log Normal. Tests based upon partitioning the range of the city 

size random variable into 10 equi-probable regions are reported in tables 2 and 2a for the 

Pareto distribution and in tables 3 and 3a for the Log-Normal distribution. It is instructive 

to see how these regions were determined. For 10 equi-probable intervals we need to 

                                                 
1As an aside it is interesting to note that this is really an application of the Central Limit 
Theorem we discussed in CN4.  



determine from the cumulative density function F(x) the values of x for which F(x) = 0.1, 

0.2, 0.3, ….., 0.9 (recall that F(x) = P(X<x)). For the Pareto (θ=1) distribution this means 

given p and xmin = 100000 solving the formula: 
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For the normal distribution we do not have a closed form solution for F(x) so that we 

have to resort to the statistical tables. Given that x ~ N (μ,σ2) and given values for μ and 

σ2 recall that: 
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so we simply look up in the standard normal tables the value Zp* for which P(Z ≤ Zp*) = 

p and solve for x = μ + σZp* for p = 0.1, 0.2, ..., 0.9. When we do not know μ and σ2 we 

have to use estimates and remember to adjust the degrees of freedom in the goodness of 

fit test accordingly. 

 

Recalling that the Goodness of Fit test statistic is given by: 

                   ( )2

1

K
k k

k k

O E
E=

−
∑  

Ok is simply obtained by counting up how many cities have populations in the k’th 

interval and Ek is simply the sample size x 0.1 in every case. The statistic is distributed as 

χ2(K-1-m) where m is the number of parameters to be estimated so that when K = 10 and 

we estimate μ and σ2  in the case of the normal we have a test with 7 degrees of freedom. 

In the case of the Pareto distribution Anderson and Ge actually estimated θ so that it 

became an 8 degree of freedom test rather than a 9 degree of freedom test. 
     

     As for the results the last columns of tables 2 and 2a indicate the Pareto distribution is 

not rejected for the USA (with the exception of 1950) but it is rejected for China (with 

the exception of 1949) whereas tables 3 and 3a show that the log-normal distribution is 

not rejected for China but it is for the USA. This suggests that the lower reflective 



boundary operates in the USA but not in China so that China appears to obey Gibrat’s 

rather than Zipf’s law.  

 

       If the city size distribution in China obeys Gibrat’s law the means and variances 

should be increasing over time. To examine this possibility we need to modify means and 

variances tests to enable us to make comparisons through time. 

 

The difference in means test in the Chinese City Size Data example. 

 

In the case of our data on Chinese city sizes the sample sizes are generally so large that 

the standard normal difference in means test would be appropriate. So for example the 

critical values for a two-sided difference in means test of size .05 for city sizes for 1985 

and 1990 would be: 
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which, given the difference in sample means is 6.2 fails to reject the hypothesis of 

identical means.  
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Appendix 
 
Table 1.  
Summary Statistics of City Size (x10000) in China 

 1949 1961 1970 1980 1985 1990 1994 1999 

Mean  47.9 56.4 56.4 64 67.7 73.9 78.7 82.3 

Std deviation 60.7 75.9 77.2 81.5 76.5 73.4 71.5 87.9 

Median 28.4 35.3 29.9 36.7 43.6 57.1 63.2 64.1 

Minimum  10.1 10.2 10.2 10.2 10.1 10.2 11.97 10 

Maximum 418.9 641.2 580.2 601.3 698.3 783.5 953 1127 

Number of cities 77 176 164 208 313 453 606 658 
 
Table 1a.  
Summary Statistics of City Size (x10000) in United States of America: 

Year 1930 1940 1950 1960 1970 1980 1990 2000 
mean 39.2 47 47.3 43.6 40.5 33.5 32.6 30.3 

s.d. 81.1 89.5 89.9 81.6 76.5 64.8 63.3 60.2 

median 16.6 19.3 18.7 19.4 17.7 16.9 17.2 17.3 

minimum 10 10.1 10.2 10 10 10 10 10 

maximum 693 745.5 789.2 778.2 789.6 707.2 732.3 800.8 

observations 94 98 112 136 161 168 192 238 
 
 



Table 2 
The Rank Order (Single Pareto)  Distribution Model (China) 

Year Sample 
size 

    pminML   θML    Var(θMLE) (θOLS) Var(θOLS)   χ 2 (8) GF 

1949  77 10.0083      0.8649      0.0097        0.9138       0.0004        12.4805* 

1961 176 10.1719      0.7762      0.0034        0.8591       0.0003        36.8409 

1970 164 10.1875      0.8027      0.0039        0.8747       0.0002        21.0000 

1980 208 10.1410      0.7072      0.0024        0.7989       0.0002        60.7500 

1985 313 10.0378      0.6377      0.0013        0.7374       0.0003       187.9265 

1990 453 10.1675      0.5830      0.0008        0.6793       0.0002       446.8896 

1994 606 11.9502      0.6025      0.0006        0.7021       0.0002       686.5743 

1999 658 9.9848        0.5367      0.0004        0.6259       0.0002       822.2128 
Table 2a 

The Rank Order (Single Pareto)  Distribution Model (US) 
Year Sample 

size 
  pminML       θML        Var( θML )     θOLS       Var( θOLS )    χ 2 (8)GF     1-F(χ 2 ) 

1950 112 10.0624   1.0463     0.0098    1.0166    0.0004      16.2142     0.0394  

1960 136  9.9612    1.0729     0.0085    1.0600    0.0004        9.2941     0.3181 

1970 161 9.9414     1.1314     0.0080    1.1110    0.0003        9.2484     0.3218 

1980 192 9.9458     1.3014     0.0101    1.2637    0.0003      10.6905     0.2199 

1990 168 9.9695     1.3213     0.0091    1.2945    0.0002      11.7500     0.1627 

2000 238 .9844       1.3920     0.0081    1.3679    0.0003        6.1176     0.6341 
  
Legend 
    pminML                      Unbiased transformation of Maximum Likelihood             

Estimate of  the Lower bound (see footnote 5). 
       θML               Maximum likelihood estimate of Zipf parameter.  
   Var( θML )        Variance of maximum likelihood estimate. 



      θOLS                Restricted Least Squares Estimate of Parameter.  
    Var( θOLS )      Variance of Restricted Least Squares Estimate. 
     χ 2 (8)GF         Pearson Goodness of Fit Test   (based upon 10 
                            equiprobable cells). 

1-F(χ 2 )            Upper tail probability of Pearson Goodness of Fit    
                         Test 

Table 3 

Log-normal Model (China) 

Year Sample 
size 

    Mean        Std Dev   Std Error of mean   χ 2 (7) GF       1-F(χ 2 ) 

1949   77  3.4596        0.8312           0.0947                7.8052       0.3501       

1961 176  3.6079        0.8435           0.0636                8.8864       0.2609       

1970 164  3.5670        0.8771           0.0685             16.0000       0.0251       

1980 208  3.7307        0.8532           0.0592              20.8462       0.0040       

1985 313  3.8744        0.7792           0.0440              11.3131       0.1255       

1990 453  4.0344        0.7022          0.0330              17.6181       0.0138       

1994 606  4.1406        0.6479           0.0263                5.0231       0.6571       

1999 658  4.1641        0.6606           0.0258              11.3921       0.1224       

Table 3a 
Log-normal Model (USA) 

Year Sample 
size 

        Mean        Std Dev       Std Error of mean      χ 2 (7) GF*  

1950 112       12.4749       0.9126                0.0862                40.1429 

1960 136       12.4411       0.8706                0.0747                51.6471 

1970 161       12.3909       0.8454                0.0666                64.4037  

1980 168       12.2756       0.7547                0.0582                69.2619 

1990 192       12.2667       0.7356                0.0531                70.1875 

2000 238       12.2298       0.7003               0.0454                 90.8235 



* Upper tail probabilities not reported since they are all substantially 
less than .01 


