Hypothesis Testing and Confidence Intervals IL
(Two Sided Tests, ‘t’ Tests, Tests for Variances, Goodness of Fit tests, P-Values.)

The hypotheses considered in the previous chapter addressed the issue of whether or not the
true population mean was greater (less) than or no greater (less) than a particular value and the
confidence intervals addressed a similar one sided issue. Similar principles can be applied to
addressing the questions “Is the unknown population mean equal to a particular value or not?” or
“What is the interval within which I could expect the unknown population mean to lay with some
pre-specified probability?”. In this process there will no longer be a question of which way round
to pose the test, the null hypothesis will always be that the unknown population mean is equal to a
particular value and the alternative will be that it is not. Then the testing issue becomes one of “Is
the sample mean sufficiently far below, or sufficiently far above the null hypothesized population
mean to warrant its rejection?”. The notions of Type I and Type II Errors still remain, the former
being to conclude that the population mean is not equal to the null hypothesised value when in
truth it is, the latter being to conclude that the population mean is equal to the null hypothesised

value when in truth it is not. Similarly the notions of power and size also retain their meanings.

Constructing the Test.

‘Now X will constitute evidence against the null if it is sufficiently far away from u, which could
be either less than or greater than the null hypothesized value. Effectively two critical values have

to be determined, a lower one (C,) and an upper one (Cy). The decision rule will be if X <Cpor
if X > Cy, reject H,, otherwise accept H,. Again, after choosing a for the probability of a type one

error (which will occur when X <C; or X > CU when H, is true), the upper and lower critical

values are determined as follows:
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In fact the critical values are usually based upon y = 6 = /2 since this produces the shortest
distance between the two critical values (the narrowest acceptance region) but generally any
values such that y + & = a would be appropriate. Making the upper and lower critical regions have
equal probability yields upper and lower critical values as:
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The two sided confidence interval follows in exactly the same fashion as with the one sided
confidence intervals derived earlier so that the answer to the question “Given the sample mean
and a known variance ¢, what is an interval within which one could expect the unknown

population mean to lay with 1-a probability?” is given by:
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which are the critical values for the correspondingly sized hypothesis test with the null

hypothesized mean replaced by the sample mean.

“t”Tests.

In all of the hypothesis tests we have considered until now we have presumed to know the
variance 7, but in practice invariably this will not be the case. We have available an estimate of

the variance from our random sample given by:
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Can it simply be substituted into the various formulae for the test critical values and confidence
intervals we have derived? The answer is more or less but not exactly. Recall that in deriving our
tests and confidence intervals we were transforming the sample mean into a standard normal
random variate by subtracting its mean and dividing by its standard deviation. This is simply a
linear transformation employing constants and one of the remarkable properties of normal random
variables is that they remain normal under constant or non-stochastic linear transformations.
However, the sample based estimate of the variance is itself a random variable and not a constant
-so that the transformation is no lo.nger non-stochastic and the transformed mean does not retain
its normality. Fortunately its distribution has been worked out by William Gossett to be a “t”
distributed random variable with n-1 degrees of freedom'. Thus the one sided hypothesis test

critical value and its corresponding confidence bound given in the previous chapter are

respectively given by:
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Details of the “t” distribution appear in the appendix to the previous chapter.



and the two sided test critical values and confidence intervals in this chapter are given by:

Cp Cp = By £ %t(l_%)(n—l)

R, B, = RE —‘/%t(l_g)(n-l)
So the formulae essentially stay the same with the estimated standard deviation and t distributed
variate being respectively substituted for the known standard deviation and standard normal
variate. As pointed out in the appendix of the previous chapter, as the degrees of freedom become
large the t distribution tends toward the standard normal. In fact for degrees of freedom above 50
the standard normal and t are pretty close already so that when large samples are involved there is

very little difference between the two.
Tests and confidence intervals for Variances.

The magnitude of the variance may be of interest and, just as in the case of the mean, tests and

confidence intervals of both the one sided and two sided variety are available. In this case the

distribution will provide the basis for the comparisons, since it can be shown that for X ~ N(po?):
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So that for an upper tailed test of size o for Hy: o® < &%, against H;: o > ¢’; a critical value C may

be obtained from:

a = P(Dpe I) = P(;si > C|H° is rue)

which will be true when:

6,2
C = Exl_a(n-l)



]

In a similar fashion a lower tailed test of size o for Hy: 6® > o, against H,: ¢® < 6’ a critical value

C may be obtained from:

a = P(Type I) = P(6” < Cpy iy )

_ which will be true when:
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Again following the logic of previous arguments lower and upper 1-o, Confidence Bounds for the

value of the variance would be given by when:
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In a similar fashion a two sided test of size a for H,: 6 = 6°, against H,: ¢® # ¢, two critical
values C; and Cy; may be obtained from:
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Goodness of Fit Tests.

Sometimes rather than being interested in population means and variances an investigator is
interested in whether or not the population distribution takes a particular form f{x) (where f(x) is
known). In this case we resort to goodness of fit tests. Given a random sample X;, i = 1,..,n drawn
from a distribution f{X), the domain of X is split up into K mutually exclusive and exhaustive

intervals and the two basic formulae for the goodness of fit test are then given by:
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where O, is the observed number of elements in the sample in the k’th interval (p°, being the
corresponding proportion) and E, is the expected number of elements in the k’th interval under
the null hypothesis (p%, being the corresponding proportion). Obviously O, is obtained by simply

counting how many observations arrise in the k’th interval, E, is evaluated by computing:

E, = n(F(b) - Fla))

where a and b are the upper and lower limits of the k’th interval and F( ) is the Cumulative

distribution function of f{ ). Note that p’, and p", can be respectively obtained by dividing O, and
‘E, by n. |

GF is a 1%(K-1-m) statistic where K is the number of intervals and m is the number of parameters
to be estimated when the null distribution f{ ) is not fully specified. Clearly the lower bound for
GF is 0, it occurs when what is observed is perfectly coincident with what is expected in all
categories. On the other hand when there is a large divergence between what is observed and
what is predicted by the theory GF will be a large positive number. Consequently GF will be used
in the context of a one sided upper tailed test where H,: f{X) is the true distribution and H,: {X)
is NOT the true distribution a test of size a would reject the null if GF > o, ,,(K-1-m) otherwise

the null is to be accepted.



As for implementing the test, there are some practical considerations. Regarding choosing the
mutually exclusive and exhaustive partitions two basic rules of thumb should be acknowledged.
The partitions should be chosen so that E, > 5 for all k and they should be chosen so that the
various intervals are close to equiprobable. Clearly this means that no more than n/5 intervals

should be entertained and generally n/10 would be a better guide.
“P” Values.

Many standard statistical software packages provide “P” values for the standard statistics they
calculate. Basically the “P” value for a given statistic (be it a sample mean or a sample variance) is
the probability under the null that you would observe a statistic greater than that value so that for

a sample mean under the Hy: p< p, the “P” value is given by:

P = P(a sample mean > X | H)

so that if P is less than the size of the test then the null would be rejected.



