Hypothesis Testing and Confidence Intervals I: One Sided Tests and Intervals.

Evaluating the weight of evidence supporting an idea and assessing the amount of confidence
one can attribute to an idea laying in particular region are two intimately related problems that
arise in the practice of applying statistics. Indeed they turn out to be the opposite sides of the
same coin and we shall study the latter as the obverse of the former. Hypothesis testing is all

about making choices under uncertainty, the general problem can be characterised as follows.

Organizing The Test.

Suppose the true state of the world can be one of two things denoted H, (the null hypothesis)
and H, (the alternative hypothesis), however it is not known which state of the world prevails.
Within the context of this uncertainty based upon some information (the data) a choice or decision

has to be made, is the truth H, or H,? The situation is best described in the following table:

Table 1. The True State of the World
H, H,
The Decision H, v Type II Error
H, Type I Error v

_fundamentally two types of mistake can be made, concluding the world is H; when in fact it is H,
(a Type I Error) and concluding that the world is H, when in fact it is H, (a Type II Error). The
problem is how to organize the decision process and data in such a way as to minimize the impact

of the errors.

In minimizing the impact of the errors the first important thing to note is that the errors need
not be equally critical or important, the following example will suffice as an illustration. Suppose
you manufacture brake pads for cars and your customers, the car manufacturers require pads that
have at least 10000 Ibs per square inch breaking power. To examine the breaking power of a set
of pads you have to test them to destruction so you manufacture a batch, test a sub-sample and,

based upon the test, deduce the breaking power properties of those remaining in the batch. If your



test suggests the batch has adequate breaking power you will sell the rest to the manufacturers

otherwise you will scrap them. Reproducing the above table for this problem yields:

Table 2. (One Sided Lower Tailed Test) The True State of the World

H, : Braking power | H, : Braking power
> 10000 Ibs p.s.i. < 10000 Ibs p.s.i.

The Decision H, : Braking power v Type I Error
> 10000 1bs p.s.i.

H, : Braking power Type I Error v

< 10000 Ibs p.s.i.
Concluding H, when in fact H, is true (a Type I Error) results in scrapping a batch of acceptable

brake pads. Concluding H, when in fact H, is true (a Type II Error) involves selling a bunch of
defective brakes. Aside from the obvious moral issue, in a litigious world such as ours it is pretty
obvious that a Type II error has far more serious consequences than a Type I error! The impact of
an error is minimized by controlling the probability of it occurring at some preassigned low value
chosen by the investigator. The usual practice in statistics is to control the probability of a type
one error (P(Type I Error) is usually denoted a and called the size of the test) and take whatever
Type II probabilities arise (P(Type II Error) is usually denoted by B and 1-§, the probability of
correctly rejecting a false null hypothesis, is called the power of the test). Consequently
hypotheses are organised in such a way that the most serious error is a Type I Error and the
-probability it occurs is set at a. For example in the above mentioned problem the set up would be

re-arranged in the following fashion:

Table 3. (One Sided Upper Tailed Test) The True State of the World

H, : Braking power | H, : Braking power
< 10000 Ibs p.s.i. > 10000 Ibs p.s.i.

The Decision H, : Braking power v Type II Error
< 10000 1bs p.s.i.
H, : Braking power Type I Error v
> 10000 Ibs p.s.i.

Tests in the form of Table 2 are called Lower Tailed Tests (because the alternative is in the lower



tail of the null distribution) and for a similar reason tests in the form of Table 3 are referred to as

Upper Tailed Tests.

Constructing The Test.

Suppose the test has been structured as in Table 3, and we have to hand a sample of

maximum breaking power values X; , i = 1,.., n (the results from n independent experiments) the

average value of which is X. Employing ideas from the sampling theory chapter we work with the

notion that the sample mean X is distributed N(p, 6*/n) and assume for simplicity that o’ is

known (usually it is not known but we shall discover how to account for this later). If the null
hypothesis were true, the highest possible value that the true mean breaking power could take on

would be 10000 Ibs p.s.i (in general denote this as p,). This is the boundary of the null - right next

to the alternative without being in it - and in this caseX is distributed N(10000, o*/n). We assume

this to be the case. Intuitively large values of X provide evidence in favour of the alternative
hypothesis whereas small values favour the null, we need to decide upon some criterion, C,

(usually referred to as the Critical Value) for determining what constitutes large so that, if X >

C we shall choose H,: pu > p, and if X < C we shall choose Hy: p < p,.

C is determined by noting three things:
1) That a has been chosen as the probability of a type 1 error.

2) That such an error would be committed if H, were chosen when H, was true.
3) H, will be chosen when X > C.

Bringing these together note that:
a=P(Dpel) = P(x>Cly ue)
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where a, J1,, o and n are all known. The last equality comes from the fact that since X is

distributed N(p,, 6/n), (X - po)/(c/Vn) is distributed as Z, a standard normal (N(0,1)) random
variable. It follows that the equality will hold when (C - p,)/(6/Vn) = Z,, (the value of a standard

normal random variable that yields an upper tail area of a. which knowing a can be found from

the standard normal tables) and as a consequence:

C = py + (6Vn)Z, .

Having derived C we simply compare it with X and if X > C reject Hy, otherwise we accept

H,. Notice that C will be bigger than p, since for a small Z,_, will be positive as will (6/v'n) (thus
in our example C will be bigger than 10000), furthermore it gets bigger as n gets smaller. This is
because we are protecting ourselves against making a type one error, the average value in our
sample has to be that much bigger than p, to protect against pure sampling variability causing the
rejection and sampling variability decreases as n increases. Notice also what would happen if the
type one error probability a were set at 0, Z, , = = = C ensuring that the null would never be

rejected and thus a type one error would never be made!

The Power of the Test.

The power of the test (1- P(Type II error)) has already been remarked upon, it is the
probability of correctly rejecting the false null hypothesis and will depend upon how close to the

null the true alternative hypothesis (H,) is. Suppose that in our example H, is true and the true
population mean is p, > p,, then X will be distributed N(u,, o%/n) and the power of the test is
given by the probability that the sample mean will exceed C under this alternative distribution

which we write succinctly as P(X > C|X~N(u,, 6*/n)). Notice that:

1) The further away p, is from p,, the closer to one will the power be.

2) The closer they are together the closer the power will be to o, the size of the test.



Indeed the plot of the power of the test as p, moves away from p, is known as the Power

Function or Power Curve. These are best illustrated by the following diagrams.
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One-Sided Confidence Intervals.
C, the critical value in a one sided upper tailed hypothesis test, is really an answer to the question

“How high does the mean of the sample have to be in order to decide on the falsity of the null
hypothesis with a probability of being wrong no greater than o?.”

One could equally well ask the question:



“Given a sample mean and given o, what an the estimate of the largest value p* for the unknown
population mean p that would yield a probability of 1-a of the true mean being no bigger than that

value?.”

In this case we could write:

1-a = P(u < p*) = P < B7%
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This will true when (X - p*)/(c/Vn) = Z, (the value of a standard normal random variable that
yields an upper tail area of 1-a. which knowing a can be found from the standard normal tables)

and as a consequence u* = X - (c/Vn)Z, which since Z,, = -Z, we may write as:

p*=X +(c/Vn)Z,,.

Notice the similarity between this upper bound of the 1-a one sided confidence interval and the
formula for the critical value C of an o size upper tailed hypothesis test, the former simply has X
in the place of , in the latter. This is no accident, the hypothesis test bases the upper bound for
the sample mean on the null hypothesized value of the population mean, the confidence interval
bases the location of the upper bound for the population mean on the sample mean. They are

simply opposite sides of the same coin.
Deciding upon a sample size.

Generally investigators accept whatever type two error probabilities arise in a particular situation
but it is possible to specify an acceptable type two error probability for a given parameter value in
the alternative and deduce thereby the sample size necessary to ensure both type one and type two

errors. Consider a one sided upper tailed test Hy pu< p, versus H, p > p, where the population



variance o? is known and where the size of the test is set to a and suppose that the investigator is
prepared to accept a type II error probability of B for a specified value p, > p,. The formula for C,

the critical value for the test is given by:

o
C =y, + =2

i

as was derived earlier. Now, since the type II error probability (B) has been specified for a
particular value in the alternative (u,), a second equation for the critical value can be determined.
Since under the alternative % will be distributed N(u,, 6*) and P(type II error) = P(accepting a
false H,) we have:

. o B X - b C-
P(rejecting false null) = P(X < C|H,) = P( <
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which will be true when:

or:

Setting the two formulae for C to be equal and solving for n yields:
) (Z,_, + Zl—B)2
(1, - )

n




Appendix. The ¢, t and F distributions.

The standard normal distribution has already been introduced in Chapter 3, because of the Central
Limit Theorem introduced in Chapter 4 it and three closely related distributions will be of major
importance in the rest of the course. The distributions and their relationships will be briefly

outlined here.
The ¢ distribution

Given k independently distributed standard normal variates Z,, i = 1, .., k, the random variable X

defined by:

k
X=Y2z2
i=1

is distributed as a y?(k) random variable with k degrees of freedom. Noting that E(Z?) =1 it is
readily seen that E(X) =k, it may also be shown that V(X) = 2k.Obviously X takes on only non

negative values and is right skewed.
The t distribution

Given X, a x2(k) random variable and Z, a standard normal (N(0,1)) random variable, where the
independently distributed standard normal variates Z;, i = 1, .., k, defining the random variable X

are also independent of Z the random variable Y defined by:

is distributed as a t(k) random variable with k degrees of freedom. Y takes on values on the whole
real line, E(X) = 0 and is symmetric around 0. As k becomes very large Y tends towards a

standard normal random variable. For k small the t distribution looks very much like a standard




normal distribution with a slightly lower peak and slightly fatter tails.

The F distribution

Given two o random variables X, (with k, degrees of freedom) and X, (with k, degrees of
freedom) where the independently distributed standard normal variates z, i=1,.,k, and the
independently distributed standard normal variates z;, j = 1, .., ky, making up the respective

variates are all mutually independent of one another, the random variable W defined by:

| ] 2

is distributed as an F(k,,k,) distribution with k, and k, degrees of freedom.

Relationships.

t(k) - N(0,1) ask - =
Y? is distributed as F(1,k).
1/W is distributed as F(k,,k,).



