
Multivariate Analysis. Dealing with more than one variable. 

 

        In all we have done so far we have only studied the statistical analysis of one variable. The 

last part of the course is going to deal with the case where we have to consider more than one 

variable. Sometimes the additional variables will be random, sometimes they will not, but in all 

cases we will be concerned with the nature of the relationships between the variables. Mostly we 

shall concentrate on just two variables and generalize to the case of many. First we shall consider 

how to detect whether or not two variables are independent.    

 

A Goodness of Fit Test of Independence. 

 

      Imagine two characteristics that an individual may have, say hair colour and eye colour, we 

may think of them as two variables and it is of interest to establish whether or not the variables 

are distributed independently across individuals. Suppose the entire range of hair colour is 

divided into c mutually exclusive and exhaustive categories numbered j = 1,..,c and similarly the 

entire range of eye colour is divided into r mutually exclusive and exhaustive categories 

numbered i = 1,..,r. The true probabilities that a randomly selected person has a particular hair 

colour / eye colour combination can be arranged on an r x c grid whose rows correspond to the 

eye colour categories and whose columns correspond to the hair colour categories as in Table 1 

below. 

 

      The pij’s are joint probabilities of having a particular hair / eye colour combination and taken 

together they correspond to the joint probability distribution of the eye colour-hair colour 

combinations. The row sums of probabilities (pi.’s) represent the marginal probabilities of having 

the i’th eye colouring regardless of which hair colour an individual has and taken together they 

constitute the marginal probability distribution of eye colouring. Similarly the column sums 

(p.j’s) are marginal probabilities of having the j’th hair colouring regardless of which eye colour 

an individual has and taken together they constitute the marginal probability distribution of hair 

colouring. Hence all of the pij’s sum to one as does the sum of the pi.’s and the sum of the p.j’s. 



 

Table 1. General probability structure. 
 hair colour j=1,..,c                                                                                   Row sums 

p11 p12    p1c p1.

p21 p22    p2c p2.

       

       

   pij   pi.

       

       

pr1 pr2    prc pr.

eye colour 
i=1,..,r 
 
 
 
 
 
Col sums 

p.1 p.2  p.j  p.c 1 
 

Table 2. Independent Probability Structure  
 hair colour j=1,..,c                                                                                   Row sums 

p1. p.1 p1.p.2    p1.p.c p1.

p2. p.1 p2.p.2    p2.p.c p2.

       

       

   pi.p.j   pi.

       

       

pr.p.1 pr.p.2    pr.p.c pr.

eye 
colour 
i=1,..,r 
 
 
 
 
 
Col sums 

p.1 p.2  p.j  p.c 1 
 



The Theoretical Implication of Independence. 

 

Back in chapter 2 we observed that, if two events A and B were independent, their joint 

probability was equal to the product of their marginal probabilities so that P(A∩B) = P(A)P(B) 

under independence. If this is true for hair colour and eye colour then P(i’th eye colour and j’th 

hair colour) = pij = P(i’th eye colour regardless of hair colour) x P( j’th hair colour regardless of 

eye colour) = pi. p.j would have to hold for all i and j. This would change the configuration of the 

probabilities in Table 1, Table 2 presents how they would look. 

 

The sample structure. 

 

Suppose we have a random sample of N individuals. Each one of the individuals in the sample 

will have one and only one of the hair colour - eye colour category combinations. The number of 

people in the sample with the ijth eye-hair colour combination (Oij) divided by the total number 

of people in the sample (N) can be thought of as an estimate of the true probability that a 

randomly selected person from the population has that particular hair colour-eye colour 

combination so that the estimate may be written: 
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Similarly the sum over all possible eye colours (hair colours) of the number of people with the 

i’th hair colour (j’th eye colour) divided by the total number of people in the sample can be 

thought of as an estimate of the true probability that a randomly selected person from the 

population has the i’th particular hair colour (j’th particular eye colour) so that: 
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These estimates obey adding up rules in the same way that the true probabilities obey such rules 

namely: 
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If hair colour were distributed in the population independently of eye colour one would expect it 

to be reflected in the random sample namely: 

                                     ij i jp p p≈  for all  i=1,..,r; j=1,..,c. 

If both sides of this approximate inequality were multiplied by N the sample size we would have: 

                ( ) ( ) 1,..., ; 1,....,ij ij i j ijO N p N p p E for all i r j c= ≈ =     =  =  

Where Eij represents the number expected with the i’j th eye / hair configuration if the 

characteristics were truly independent. This suggests a test of the form: 
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 which has exactly the same form as the goodness of fit test for distributions in the previous 

chapter except here it is used to see how well the probability structure induced by independence 

fits. The statistic can be shown to have (r-1)(c-1) degrees of freedom and will be used in the 

context of a one sided upper tailed test. 

 

Jointly Distributed Random Variables 

 

The joint probability distributions of random variables can be viewed in much the same way that 

the joint probabilities of events were considered. Let X and Y be two random variables, the 

nature of their joint density function f(x,y) will vary with the discreteness or otherwise of X and 

Y just as in the single or uni-variate case. Indeed the properties of the multivariate f(x,y) are very 

natural multi-variate extensions of their uni-variate counterparts outlined above. There is no 

reason why both variables should be discrete or both continuous but, for expositional 

convenience and because the contrary is seldom encountered in this field, that is what will be 

assumed here. 

 

In the discrete case f(xi,yj) =  P(X=xi,Y=yj) and in the continuous case: 
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So that again Discrete Joint Probability Distributions attach probabilities to points, Continuous 

Joint Probability Distributions attach probabilities to intervals. 

 

Associated with these densities are cumulated distribution functions F(x,y) which in each case 

yield the probability that the random variables X and Y are respectively less than some values x 

and y. Algebraically these may be expressed for jointly continuous and jointly discrete 

distributions respectively as: 
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Clearly in the case of continuous distributions ∂2F(X,Y)/(∂X∂Y) = f(X,Y). The situation where 

one variable is discrete and the other continuous can be considered in an obvious fashion by the 

appropriate combination of summation and integration operators. 

Marginal Distributions, Conditional Distributions and Independently Distributed Random 

Variables 

 

When only one of the jointly distributed variables is of interest the marginal distribution of that 

variable may be obtained in the continuous case as: 
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in the discrete case the analogous result is: 
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Casual perusal of the analogous rules for manipulating joint probabilities above will reveal an 

obvious correspondence with distributions of random variables which can be extended to 

conditional distributions and the notion of independently distributed random variables. Thus 

conditional distributions of x given y and y given x are for both continuous and discrete random 

variables: 
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In exactly the same fashion for both continuous and discrete random variables independence 

between x and y implies f(x,y) = f(x)f(y). More importantly for a sequence of mutually 

independent random variables xi, i=1,..,n f(x1,x2,x3,..,xn) = f(x1)f(x2)f(x3)....f(xn).   

 

Interested will also focus on the conditional distribution of x given that it only takes on certain 

values in its range, in particular we may be interested in the conditional distribution of x given 

that x < z. This is f(x|x<z) = f(x)/F(z), essentially the probability distribution of x below z is 

simply rescaled by the probability that x is less than z. 

 

3) The Covariance of X and Y E (X-E(X))(Y-E(Y)) 

This function yields the covariance of X and Y which, when X and Y are independent, is equal to 

zero. This is easily demonstrated for continuous distributions and has a direct analogue for 

discrete distributions. Since X and Y are independent f(x,y) = f(x)f(y), it follows that: 
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For discrete distributions which are independent we have: 
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Clearly the metric of the covariance is the product of two measures, respectively those of X and 

Y so that for example if X were income $US and Y were educational status measured in 

Education units EU’s then the covariance would be measured in $US x EU’s. Again we could 



consider standardizing the measure to make it metric free, and 2 examples are pertinent. When 

standardized by the standard deviation of X times the standard deviation of Y the covariance 

becomes the well known correlation coefficient indicating the extent and direction of a linear 

relationship between X and Y. 

 

Correlation and Covariance. 

 

Looking at the definition of the covariance between X and Y (E(X-E(X))(Y-E(Y))) we see that 

its units of measurement are the product of the units of measurement of the individual variables. 

If for example we were considering the covariance between peoples height and weight the 

covariance would be measured in inches x lbs or perhaps in meters x kilos. Interestingly enough 

the value of the covariance would differ depending upon which metrics were chosen or, put 

another way, covariance is not a unit free measure. Correlation is a measure related to covariance 

which is unit free, it is a number which ranges between -1 and +1 and is of the following form: 

( ) ( )
( , )1( ( , ) ) 1COV X YCOR X Y

V X V Y
− ≤= ≤  



Sums and differences of independent random variables. 

 

Returning to an issue in previous chapters we are now able to understand why it is the variance 

of a sum of independent random variables is equal to the sum of thier variances. Consider two 

independent random variables X and Y with respective expectations E(X) and E(Y) and 

respective variances V(X) and V(Y). Following the definition of the variance in general the 

variance of a sum of two random variables is given by: 

 

E(X+Y-E(X+Y))2 = E((X-E(X)) + (Y-E(Y)))2

                             = E((X-E(X))2 + (Y-E(Y))2 + 2(X-E(X))(Y-E(Y)) 

                             = V(X) + V(Y) + 2COV(X,Y) 

 

But since the covariance of independent random variables is zero, the variance of their sum 

reduces to the sum of their variances. It turns out that the variance of the difference between 

two random variables is also the sum of their variances; this may be seen as follows, since again 

in general: 

 

E(X-Y-E(X-Y))2 = E((X-E(X)) - (Y-E(Y)))2

                             = E((X-E(X))2 + (Y-E(Y))2 - 2(X-E(X))(Y-E(Y)) 

                             = V(X) + V(Y) - 2COV(X,Y) 

the zero covariance implied by independence results in the variance of the difference between 

two independent random variables being equal to the sum of their variances. 

Analysis of Variance. 

 

Suppose you own a wheat farm and wish to evaluate the effectiveness of a variety of fertilizers 

on the farm. Splitting your farm into a collection of homogeneous sub plots1 you allocate one 

type of fertilizer to one group of plots, another to another group of plots and so on. At the end of 

                                                           
1That is they are identical in every respect, they all suffer the same amounts of sunshine and 
rainfall and each has exactly the same amount of nutrients.  



the year you calculate the average yield of plots covered with a particular type of fertilizer (as 

well as the average yield off the plots with no fertilizer) and wish to establish whether fertilizing 

has had any effect. The statistical technique for doing this is Analysis of Variance. 

 

The Numerical Structure of the Problem. 

 

Each of the different fertilizers (including no fertilizer) is termed a treatment, let us suppose there 

are T treatments t = 1,..,T and that nt plots have been allocated to treatment t. This means the 

total number of plots (N) on the farm is given by: 
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Let the yield from the i’th plot under the t’th treatment be Yit. The average yield for treatment t 

is: 
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The average yield over all the plots of land is given by: 
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indicating that the overall average is really a weighted sum of the individual treatment yield 

averages. 

 

The question of whether the different fertilizers had different effects then becomes a question of 

whether all these various means are different from one another. 

 

The Theoretical Structure of the Problem. 

 

Suppose the true mean or expected yield of plots under treatment t is μt and that all plots are 

independent of each other and are subject to random shocks with the same degree of variation 

then the theoretical model underpinning this problem may be written as: 
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The important point here is that the μt’s and the eit’s are never observed, all you ever measure is 

the Yit’s. The variability in the yields of different plots under different treatments (the Yit’s) 

comes from two sources, variability in the random component (the eit’s) and variability in the 

treatment effects (the μt’s). If the different treatments (various fertilizers) had no effect all the 

μt’s would be the same and the eit’s would be solely responsible for variability in the Yit’s. The 

trick here is how do we detect this from observing just the Yit’s! 

 

First note that E(Yit) =  μt for all i and t so that: 
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Suppose we further add that eit is normally distributed, then all the above mentioned treatment 

means will be normally distributed so that: 
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To test whether particular treatment means differ we simply apply the difference in means “t” 

test which was introduced in the previous chapter. However to do this for all pairs of treatments 

involves T(T-1)/2 comparisons. 

 

It would be useful to have a general test for whether or not the treatments have differing effects 

and this is what the analysis of variance test provides. It does this by comparing an estimate of 

the total variability in the Yit’s engendered by the treatment effects with an estimate of the total 

variability engendered by the purely random effects (the eit’s). These two estimates are 

essentially the components of the total sum of squares.  



 

Total Sum of Squares. 

 

The TOtal Sum of Squares (TOSS) representing the total variability in the Yit’s is given by: 
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this reflects the variability induced by variability in the unobserved μt’s and by variability 

induced by the unobserved eit’s. 

  

Error Sum of Squares 

 

The Error Sum of Squares (ERSS) representing the variability induced by the purely random 

effects (the eit’s) is captured by: 
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and reflects the variability in the Yit’s after having taken out the variability of the treatment 

effects. 

 

Treatment Sum of Squares. 

 

It follows that the Treatment Sum of Squares (TRSS) representing the variability due to the 

treatment effects is given by: 
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Some simple algebra will demonstrate that this is indeed true, since: 
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Clearly the relative magnitudes of TRSS and ERSS tell us something about the relative 

importance of the treatment variability and the pure random variability. Before making the 

comparison we should rescale them by their degrees of freedom (just like we did the sum of 

squared deviations from mean whenever we used that in a test). This raises the question what are 

the degrees of freedom associated with each concept? 

 

The Degrees of Freedom. 

 

Total Sum of Squares (TOSS) 

The degrees of freedom associated with the TOSS is straightforward it is simply a sum of N 

squared deviations from mean terms and as before it will have N-1 degrees of freedom (just like 

the sum of squared deviations from mean employed in the variance estimators earlier). 

 

Error Sum of Squares (ERSS) 

The degrees of freedom associated with the Error sum of squares (ERSS) is best understood by 

seeing it as a sum of T squared deviations from mean terms of the form: 

                                 ( )2

1
1,......,

tn

it t
i

Y Y for all t T
=

−       =∑  

where each  typical term has nt - 1 degrees of freedom so that the sum of them will have: 
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degrees of freedom. 



 

Treatment Sum of Squares (TRSS) 

The degrees of freedom associated with the treatment sum of squares can be understood by 

noting that the TRSS is really a weighted sum of T squared deviations of the treatment means 

from the overall mean. Noting that the overall mean is a weighted sum of the treatment means 

this means that this sum has only T-1 independent components since: 
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that is the weighted sum of deviations of the treatment mean from the overall mean is equal to 0. 

 

Notice that the degrees of freedom obey the same adding up rule as the concepts themselves 

namely: 

                                               TOSS = ERSS  + TRSS 

                                                  N-1  =   N-T   +  T-1 

 

The Test Statistic. 

 

The ratio of the treatment sum of squares to the error sum of squares, each divided by their 

respective degrees of freedom, will tell us something of the relative importance of the treatment 

effects as opposed to the error effects in the overall variability of the Yit’s. In fact this ratio can 

be shown to be an F(T-1, N-T) random variable so that: 
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If TRSS is close to 0 then this ratio will be close to 0 implying that the variability of the Yit’s is 

largely due to variability in the eit’s. If, on the other hand, the ERSS is close to 0 then the ratio 

will be a large number implying that the variability of the Yit’s is largely due to variability in the 

μt’s. Thus to test H0: μ1 = μ2 = …= μT against H1: μj ≠ μk for some j ≠ k, j,k = 1, 2,..,T we can use 

the ratio in a one-sided upper tailed test with large values of the statistic rejecting the null 

hypothesis and small values of the statistic failing to reject the null. 



 

Simple formulae for ease of calculation. 

 

The easiest way to do calculate the test is to calculate TOSS and ERSS from the following 

formulae and then calculate TRSS = TOSS – ERSS. 
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Notice that the first double sum term in each formula is the same so it only need be calculated 

once. 

 

Finally, if it is determined that the different treatments do have different effects then we can 

pursue difference in means tests of the different treatment means to see which one of the 

treatments is best. 


