University of Toronto
 Department of Economics
 ECO 2061H

Economic Theory - Macroeconomics (MA)

Winter 2012

Professor Tasso Adamopoulos

Answers to Assignment 2

1. The household's problem is,

$$
\max _{c_{t}, \ell_{t}, I_{t}} E_{0} \sum_{t=0}^{\infty} e^{-\rho t}\left[\ln \left(c_{t}\right)+\frac{\left(1-\ell_{t}\right)^{\theta}}{\theta}\right]
$$

s.t.

$$
\begin{gathered}
c_{t}+I_{t}=w_{t} \ell_{t}\left(1-\tau_{t}\right)+R_{t} K_{t}+T_{t} \\
K_{t+1}=(1-\delta) K_{t}+I_{t}
\end{gathered}
$$

where T_{t} are lump-sum taxes, and $R_{t}=r_{t}+\delta$. Set-up the Lagrangian,

$$
£=E_{0}\left\{\sum_{t=0}^{\infty} e^{-\rho t}\left[\ln \left(c_{t}\right)+\frac{\left(1-\ell_{t}\right)^{\theta}}{\theta}\right]+\sum_{t=0}^{\infty} \lambda_{t}\left[w_{t} \ell_{t}\left(1-\tau_{t}\right)+R_{t} K_{t}+T_{t}+(1-\delta) K_{t}-c_{t}-K_{t+1}\right]\right\}
$$

(a) The first order conditions are,

$$
\begin{gathered}
E_{t}\left\{e^{-\rho t} \frac{1}{c_{t}}-\lambda_{t}\right\}=0 \\
E_{t}\left\{-e^{-\rho t}\left(1-\ell_{t}\right)^{\theta-1}+\lambda_{t} w_{t}\left(1-\tau_{t}\right)\right\}=0 \\
E_{t}\left\{-\lambda_{t}+\lambda_{t+1}\left[R_{t+1}+1-\delta\right]\right\}=0
\end{gathered}
$$

(b) Combining the first and the third, the second and the third and the first and the second you get respectively,

$$
\begin{gathered}
\frac{1}{c_{t}}=e^{-\rho} E_{t}\left\{\frac{1}{c_{t+1}}\left(1+r_{t+1}\right)\right\} \\
e^{-\rho} E_{t}\left\{\left(1+r_{t+1}\right)\left(\frac{1-\ell_{t+1}}{1-\ell_{t}}\right)^{\theta-1} \frac{w_{t}}{w_{t+1}} \frac{\left(1-\tau_{t}\right)}{\left(1-\tau_{t+1}\right)}\right\}=1 \\
\left(1-\ell_{t}\right)^{\theta-1}=\frac{w_{t}\left(1-\tau_{t}\right)}{c_{t}}
\end{gathered}
$$

where I have used that $R_{t}=r_{t}+\delta$. The first of these equations reflects the trade-off between consumption today and consumption tomorrow. The second reflects the trade-off between leisure (labor supply) today and leisure (labor supply) tomorrow. The third reflects the trade-off between leisure and consumption today. See class notes for the intuition.
(c) We can rewrite the Euler equation as,

$$
\frac{1}{c_{t}}=e^{-\rho}\left\{E_{t}\left(\frac{1}{c_{t+1}}\right) E_{t}\left(1+r_{t+1}\right)+\operatorname{Cov}\left(\frac{1}{c_{t+1}}, 1+r_{t+1}\right)\right\}
$$

Denote by c_{t+1}^{+}the level of consumption for which $\operatorname{Cov}\left(c_{t+1}^{+}, 1+r_{t+1}\right)>0$ and thus $\operatorname{Cov}\left(\frac{1}{c_{t+1}^{+}}, 1+r_{t+1}\right)<0$. Denote by c_{t+1}^{-}the level of consumption for which $\operatorname{Cov}\left(c_{t+1}^{-}, 1+r_{t+1}\right)<0$ and thus $\operatorname{Cov}\left(\frac{1}{c_{t+1}^{-}}, 1+r_{t+1}\right)>0$. From the right hand side of the above equation this implies that $\frac{1}{c_{t}^{+}}<\frac{1}{c_{t}^{-}}$, and consequently $c_{t}^{-}<c_{t}^{+}$. Intuitively: when the covariance between consumption and the interest rate is positive (you get a good return in good times) then the marginal utility of consumption and the interest rate is negative. Consequently the expected marginal benefit from giving up more consumption today (and thus saving) is lower; consequently you will save less and consume more today.
(a) H_{H} ($C_{t}+(1+2) X_{t}=W_{t} L_{t}+r_{t}+T_{t}$ budget comstraint

Resource Constraint $\quad C_{t}+X_{t}=Y_{t}$.
(b) Transform problem in ferms of units of effective monkers.

$$
\begin{aligned}
& \text { Prodection Function } \\
& \frac{\text { Prodrection Fincfion }}{Y_{t}=1 K_{t}^{\alpha}\left(A-L_{t}\right)^{1} T^{\alpha}} \\
& \rightarrow \frac{y_{t}}{A_{t} \cdot L_{t}}=\frac{K_{t}^{\alpha}\left(A_{t} L_{t}\right)_{1}^{1-\alpha}}{A_{t} L_{t}} \quad \Rightarrow \frac{Y_{t}}{A_{t} L_{t}}=\left(\frac{K_{t}}{A_{t} L_{t}}\right)^{\alpha}
\end{aligned}
$$

$\Rightarrow \quad y_{t}=k_{t}^{\alpha}$ where by definition

$$
\begin{aligned}
& y_{t} \equiv \frac{Y_{t}}{A_{t} L_{t}} \\
& f_{t}=\frac{k_{t}}{A_{t}-L_{t}}
\end{aligned}
$$

Law of Mofion

$$
\begin{aligned}
& k_{t a t}=\left(1-\delta k_{t}+x_{t} .\right. \\
& \Rightarrow \quad \frac{k_{t h}}{A_{t} L_{t}}=(1-\delta) k_{t}+\frac{X_{t}}{A_{t} L_{t}} \\
& \Rightarrow \quad \frac{K_{t+1}}{A_{t+1} L_{t M}} \frac{A_{t+1} \cdot L_{t+1}}{A_{t} L_{t}}=c \Leftrightarrow \frac{K_{t}}{A_{t} L_{t}}+\frac{X_{t}}{A_{t} L_{t}} \\
& \Rightarrow\left(\begin{array}{c}
(1+g)(1+n) k_{E}=(1=0) f_{t}+x_{t}
\end{array}\right.
\end{aligned}
$$

Budget Constrain:

$$
\begin{aligned}
& C_{t}+(1+\theta) X_{t}=w_{t} L_{t}+T_{t} K_{t}+T_{t} \\
& \Rightarrow \frac{C_{t}}{A_{t} \cdot L_{t}}+(1, v) \frac{\ddot{X}_{t}}{A_{t} L_{t}}=\frac{w_{t}-L_{t}}{A_{t} L_{t}}+\frac{r_{t} L_{t}}{A_{t}-L_{t}}+\frac{T_{t}}{A_{t} L_{t}} . \\
& \Rightarrow c_{t}+(1+a) x_{t}=\hat{\omega}_{t}+r_{t} k_{t}+\zeta_{t} \\
& \text { where } \quad \hat{\omega}_{t} \equiv \frac{\omega_{t}}{A_{t}} \\
& \tau_{t} \equiv \frac{T_{t}}{A_{t} \cdot L_{t}}
\end{aligned}
$$

Preferences:

$$
\begin{aligned}
& \sum_{t=0}^{\infty} \beta^{t} \frac{\left(C-/ L_{t}\right)^{1-\sigma}}{1-\sigma} \cdot L_{t}=\sum_{t=0}^{\infty} \beta t \frac{\left(C_{t} / A_{t} L_{t}\right)^{1-\sigma} A_{t}^{1-\sigma} L_{t} . . . ~ . ~ . ~}{1-\sigma}{ }^{1-\sigma} \\
& =\sum_{t=0}^{\infty} \beta^{t} A_{0}^{1-\sigma}(1+g)^{(-\sigma) t} L_{0}(1+n)^{t} \frac{C^{1-\sigma}}{1-\sigma} \\
& =A_{0}^{1-\sigma} L_{0} \sum_{t=0}^{\infty}\left[\beta(1+g)^{1-\sigma}(1+n)\right] t \frac{c^{1-\sigma}}{1-\sigma} \\
& =\beta-\sum_{t=0}^{\infty} \tilde{\beta}^{t} \frac{G^{1-\sigma}}{1-\sigma} . \\
& \text { where } \\
& B \equiv A_{0}^{1-\sigma} L_{0} \\
& \hat{\beta}=\beta(1+g)^{1-\sigma}(1+\beta) .
\end{aligned}
$$

Firm problem (static each period).

$$
\max \left\{K_{t}^{\alpha}\left(A_{t} L_{t}\right)^{1-\alpha}-w_{t} \cdot L_{t}-r_{1} K_{t}\right\}
$$

FOND:

$$
\begin{aligned}
& K_{t}: \quad \alpha K_{t}^{\alpha}\left(A_{t} L_{t}\right)^{1-\alpha}=r_{t} . \\
& L_{t}: \quad(1-\alpha) K_{t}^{\alpha} A_{t}^{1-\alpha} L_{t}^{-\alpha}=w_{t} .
\end{aligned}
$$

Re-write there conditions in terms of transformed variables:

$$
\begin{aligned}
& r_{t}=\alpha\left(\frac{k_{t}}{A_{t} L_{t}}\right)^{\alpha-1} \Rightarrow r_{t}=\alpha k_{t}^{\alpha-1} \\
& w_{t}=(1-\alpha) A_{t}\left(\frac{K_{t}}{A_{t} L_{t}}\right)^{\alpha} \Rightarrow w_{t}=(1-\alpha) A_{t} f_{t}^{\alpha} \Rightarrow \hat{w}_{t}=(1-\alpha) k_{t}^{\alpha}
\end{aligned}
$$

where as deFined above:

$$
{\hat{N_{t}}}^{=}=\frac{W_{t}}{A_{t}}
$$

We can Thus write factor prices as functions of the economy aggregate capital:

$$
\begin{aligned}
& r(k)=\alpha k^{\alpha-1} \\
& \hat{\omega}(k)=(1-\alpha) f^{\alpha}
\end{aligned}
$$

HH Problem
$\frac{\text { insequence: }}{\text { Form }} M_{a x} \quad \sum_{t=0}^{\infty} \beta t \frac{\left(G_{t} / L_{t}\right)^{1-}}{1-\sigma} L_{t}$.

$$
\begin{aligned}
& s t . \\
& C_{t}+(1+\theta) X=w_{t} L_{t}+r_{t} k_{t}+T_{t} \\
& k_{t}=(1-\delta) K_{t}+X_{t} .
\end{aligned}
$$

- we can rewrite this problem in dynamic programming form. informs of the transformed. variables:

$$
v\left(k_{H}, k\right)=\max \left\{\frac{c^{1-\sigma}}{1-\sigma}+\beta v\left(k_{H}^{\prime}, k^{\prime}\right)\right\}
$$

(FE)

$$
\begin{aligned}
c+(1+\theta) x & =\hat{w}(k)+r(k) k_{H}+\tau(k) \\
(1+g)(1+n) k_{H}^{\prime} & =(1-\delta) k_{H}+x \\
& =r(k) \\
c & =x \geqslant 0
\end{aligned}
$$

$\Gamma(k)$ is a function describing how this expect the aggregate capital stock k to evolve aura time. (aggregate laupofmotion)
$k_{H}=$ individual H H capital stock per efrecthe uritoflocho
k - aggregate economy-uide capital stack. per effective unitoflabor

- in equilibrium: $\quad k_{H}=k$

Def. of RCE:
A rec is a list of functions $v\left(k_{11}, k\right) g^{c}\left(k_{1}, k\right), g^{x}\left(k_{4}, k\right)$ $g^{k^{\prime}}\left(f_{1}, k\right), f k(k), \hat{\omega}(k), r(k), \tau(k), r(k)$ such that.

- Given $\hat{\omega}(k), r(k), \tau(k)$ and the oiggregafe law of motion
 where $g^{c}\left(k_{k}, k\right), g^{x}\left(k_{1}, k\right), g^{\prime}\left(k_{k} k\right)$ ore the optimal decision refer.
- given $\hat{\omega}(k), r(k)$ the decision Function $f^{k}(k)$ solvers the ins's problem.
- markets clear

$$
\begin{aligned}
& g^{c}(k, k)+g^{x}(-k, k)=k^{\alpha} . \\
& k=f^{k}(k)
\end{aligned}
$$

- The government's budget constraint is satisfied:

$$
\theta \cdot g \times(k, k)=r(k)
$$

- indir and age. laue of motion are consistent:

$$
g^{k^{\prime}}(k k)=r(k)
$$

(C) We canre-write the (FE) oas:

$$
v\left(k_{H}, k\right)=\max \left\{\frac{1}{1-\sigma}\left[\hat{w}(k)+[r(k)+(1 r \theta)(1-\delta)] k_{H}+z(k)\right]^{1-\sigma}+\beta v((1)\right.
$$

FOG: $\mathbb{C}^{-\sigma}\left\{-(1+g)(1+n) \frac{\text { g } 1+0}{6}\right\}+\beta v_{1}\left(k_{H}^{\prime}, k^{\prime}\right)=0$
Ec: $\quad v_{1}(k H, k)=\bar{c}^{\sigma}[r(k)+(1+\theta)(1-\delta)]$

$$
\Rightarrow \bar{c}^{\sigma}(1+g)(1+n)(1+e)=\beta c^{\prime} \dot{[}\left[r\left(k^{\prime}\right)+(1+\theta)(1-\delta)\right] .
$$

- For firm pol see part (b).
(d) A steady state equilibrium is a RCE with the property that $k^{\prime}=k \quad\left(=k_{H}^{\prime}=k_{H}\right)$!

$$
c^{\prime}=c
$$

From the Exeter equation and the firm roc:

$$
\begin{aligned}
& (1+g)(1+n)(1+\theta)=\beta\left[\alpha k^{\alpha-1}+(1+\theta)(1-\delta)\right] . \\
\Rightarrow & \frac{(1+\rho)(1+n)(1+\theta)}{\beta}-(1-\delta)(1+\theta)=\alpha f^{\alpha-1} \\
\Rightarrow & \frac{(1+\sigma)(1+n)(1+\theta)-\beta(1-\delta)(1+\theta)}{\alpha \beta}=k^{\alpha-1} \\
\Rightarrow & k^{*}=\left[\frac{\alpha \beta /(1+\theta)}{(1+\rho)(1+n)-\beta(1-\delta)}\right]
\end{aligned}
$$

Frown The lave of motion for capital in steady state:

$$
\begin{aligned}
& k(1 m)(1+g)=(1-\delta) k+x \\
\rightarrow & x^{*}=[(1+n)(1+g)-(1-\delta)] k^{*}
\end{aligned}
$$

From the produefion function

$$
y^{*}=c^{* \alpha}
$$

Then the investment rate is:

$$
\begin{aligned}
& \frac{x^{*}}{y^{*}}=[(1+n)(1+g)-(1-\delta)] k^{* 1-\alpha} \\
& \Rightarrow \frac{x^{*}}{y^{*}}=[(1+r)(1+\eta)-\beta(1-\delta)]\left[\frac{\alpha \beta /(1+0)}{(1+\eta)(1+n)-\beta(1-\delta)}\right]
\end{aligned}
$$

and ouppet is:

$$
y=\left[\frac{\alpha \beta /(1+0)}{(1+g)(1+1)-\beta(1-\delta)}\right] \frac{\alpha}{1-2}
$$

